#### Disclaimer and Limitation of Liability-

This standard has been prepared in accordance with recognized engineering principles and should not be used without the user's competent knowledge for a given application. The publication of this standard by the Deep Foundations Institute (DFI) is not intended to warrant that the information contained herein is suitable for any general or specific use.

Neither the Deep Foundations Institute (DFI) nor any of its members, directors, employees or other representatives shall be liable for damages arising out of or in connection with the use of information, processes, or products contained herein even if advised of the possibility thereof. This limitation of liability shall apply to all damages of any kind, including, without limitation, indirect, special, incidental and consequential damages, punitive damages, loss of data, income, profit or goodwill, attorneys' fees, litigation costs, loss of or damage to property and claims of third parties, even if DFI is advised of the possibility of such damages. This limitation of liability applies to claims based on breach of contract, breach of warranty, tort (including negligence), product liability or otherwise.

# DFI Committee Project Funds (CPF)

# <u>Contract:</u> ACIP Pile Committee Project on Verification of Installation and Performance of ACIP Piles

# Final Report ACIP Pile Installation, Installation Monitoring, Full-scale Load Testing, and Extraction Program

Prepared for



Prepared by
Augered Cast-In-Place (ACIP) Pile Committee

December 2017

#### **ACKNOWLEDGEMENTS**

The DFI Augered Cast-In-Place (ACIP) Pile Committee would like to extend a special acknowledgement to the following for their financial, in-kind, and/or insightful contributions and support of the project. Without their contributions, this project would not have been possible.

- Argos Concrete
- Bauer Foundation Corp.
- Berkel and Company Contractors, Inc.
- Cajun Deep Foundations
- Deep Foundations Institute
- Farrel Design-Build, Inc.
- Florida Department of Transportation
- Goettle, Inc.
- HJ Foundations
- Langan Engineering and Environmental Services
- Loadtest USA
- Malcolm Drilling Company, Inc.
- Moretrench
- Nicholson Construction Company
- Pile Dynamics, Inc.
- Skyline Steel
- SpecCrete-IP, Inc.
- Terracon Consultants, Inc
- University of South Florida

#### TECHNICAL REPORT - AUTHORS AND CONTRIBUTORS

#### **Primary Authors**

- Dr. Antonio Marinucci, MBA, P.E.
- W. Morgan NeSmith, Jr., P.E.

#### **Contributors**

- Matthew E. Meyer, P.E., D.GE
- Sam Warren, P.E.
- Dr. Alec McGillivray, P.E.
- Peter Faust, Dipl.-Ing.
- Clay Davis, EIT
- Chris Chinopulos
- Andreas Schermaier, EIT
- Mark Barnes

The financial support of the previously listed organizations should not be construed as an endorsement of this report.

#### **Executive Summary**

The Augered Cast-In-Place (ACIP) Pile Committee of the Deep Foundations Institute (DFI) performed a foundation installation, monitoring, performance and extraction program for ACIP piles in the fall of 2016. The purpose of the project was to demonstrate a fully monitored installation of instrumented 18 in (457 mm) and 24 in (610 mm) diameter ACIP piles, including automated monitoring equipment (AME); post-installation thermal integrity profiling (TIP) measurements; compression, tension, and lateral load testing (including monitoring of strain gages embedded along the compression pile shaft); and post-testing extraction of an installed pile for visual inspection.

The program was initially planned by the ACIP Pile Committee, and a program site in Okahumpka, FL was selected. Initial funding was provided by the DFI Committee Project Fund with additional funds and in-kind pledges contributed from DFI members and industry partners. In the summer of 2016, the Florida Department of Transportation (FDOT) and its research partners at the University of South Florida (USF) joined the program. Program details were finalized in the summer and fall of 2016.

The purposes of this research effort were to demonstrate

- The fully monitored installation of instrumented ACIP piles, including the use of automated monitoring equipment (AME)
- The use and accuracy of thermal integrity profiling (TIP) methods with ACIP piles
- The load-displacement behavior during compression, tension, and lateral load testing, including the use of and measurement by multiple strain gages embedded along the length of two piles
- The integrity and as-constructed geometry of an ACIP pile by extracting an installed pile for visual inspection.

To achieve the goals of the project, seven test piles were installed at a site in central Florida: two each for compression testing, tension testing, and lateral testing, and one pile for extraction and visual inspection.

The intent of this document is to make the data and information obtained during the demonstration program available to the members of the DFI ACIP Pile Committee, Florida DOT, University of South Florida, and other possible research partners for review, analysis/interpretation, and discussion. The ultimate goals of this endeavor are to advance the overall state-of-the-practice for ACIP piles and to develop documentation for review and use; installation, monitoring, and testing methods; and reporting procedures to allow for both the use of ACIP piles for structural support of bridges and the inclusion of ACIP piles in DOT and other agency specifications in the state of Florida and elsewhere.

All of the data presented and discussed herein can be made available in electronic format for additional analysis. Pertinent findings of the demonstration project include the following:

- The procedures and testing results described in the report highlight the successful installation, monitoring, and load carrying resistance provided by ACIP piles for structural support of bridges per the Florida DOT. The data can be used by the FL DOT as it develops a section for ACIP Piles for Bridges and Major Structures in its Standard Specifications.
- Grout volumes, as measured by an electromagnetic flowmeter and via manual counting of grout strokes, were in good agreement with each other.
- The overall grout volume of the extracted pile, when adjusted for the volume of grout observed flowing out of the top of the pile, was in good agreement with the volume calculated by manually measuring the circumference of the extracted pile at 1 ft (305 mm) intervals.
- Additional research into non-destructive testing (NDT) methods for ACIP piles, in particular Thermal Integrity Profiling, should produce a means to provide additional verification of pile integrity.

# **TABLE OF CONTENTS**

| Introduction                                                         | 1  |
|----------------------------------------------------------------------|----|
| Experimental Program                                                 | 2  |
| Project Location                                                     | 2  |
| Subsurface Conditions                                                | 2  |
| Test Piles - Details                                                 | 4  |
| Instrumentation                                                      | 4  |
| Grout Mix                                                            | 9  |
| Drilling Equipment and Monitoring System                             | 10 |
| Installation Records                                                 | 11 |
| Pre-Load Testing Monitoring                                          | 12 |
| Compressive Strength Testing of Grout                                | 12 |
| Strain Gage Measurements                                             | 13 |
| Thermal Measurements                                                 | 14 |
| Load Testing Results and Discussion                                  | 18 |
| Compression Load Tests                                               | 18 |
| Tension Load Tests                                                   | 23 |
| Lateral Load Tests                                                   | 25 |
| Pile Extraction and Measurements                                     | 26 |
| Additional Tests                                                     | 28 |
| Recommendations                                                      | 29 |
| Conclusions                                                          | 29 |
| References                                                           | 30 |
| Appendix A                                                           | 31 |
| Standard Penetration Test (SPT) N-values                             | 31 |
| Appendix B                                                           | 56 |
| Calibration Reports - Geokon Sister Bar Strain Gages                 |    |
| Appendix C                                                           |    |
| Appendix D                                                           |    |
| Drilling Equipment Details - Gear Box and Power Unit                 |    |
| Appendix E                                                           |    |
| Installation Measurements - Data from Automated Monitoring Equipment |    |
| Appendix F                                                           |    |

| Appendix G                                                                               | 92    |
|------------------------------------------------------------------------------------------|-------|
| Select Thermal Integrity Profiling (TIP) Test Results – Thermal Probes and Thermal Wires |       |
| Appendix H                                                                               | 98    |
| Calibration Data - Hydraulic Jack and Load Cell                                          |       |
| Appendix I                                                                               | .115  |
| Compression Load Test Setup and Test Results                                             |       |
| Appendix J                                                                               | .120  |
| Tension Load Test Setup and Test Results                                                 | .120  |
| Appendix K                                                                               | . 123 |
| Lateral Load Test Setup and Test Results                                                 | . 123 |
| Appendix L                                                                               | .126  |
| As-Built Measurements of Extracted Pile (E-1)                                            |       |

## **LIST OF FIGURES**

| Figure 1. | Project location and aerial view of test area                                                                                                                                                                                                                                                                                                            | 2 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure 2. | Layout of ACIP test piles and reaction piles: (a) original and (b) revised                                                                                                                                                                                                                                                                               | 3 |
| Figure 3. | SPT N-value variation with depth                                                                                                                                                                                                                                                                                                                         | 4 |
| Figure 4. | Distribution of temperature profile across and along an idealized uniform cast-in-place concrete pile (Mullins and Johnson, 2016)                                                                                                                                                                                                                        | 6 |
| Figure 5. | Photographs of TIP configurations used: (a) thermal wires attached to rebar cage, (b,c) thermal wires attached to PVC tubes and rebar cage (L2), (d) thermal wires attached to steel tubes and rebar cage (C2), and (e) thermal wires and vibrating wire strain gages attached to No. 11 center bars. Source for (c) and (d): Mullins and Johnson (2017) | 7 |
| Figure 6. | Geokon Model 4911 vibrating wire rebar strain meters: (a) photograph of a complete sister bar setup, and (b) schematic showing components of device (http://www.geokon.com)                                                                                                                                                                              | 8 |
| Figure 7. | Arrangement of strain gages in test piles (a) C1 and (b) C2                                                                                                                                                                                                                                                                                              | 8 |
| Figure 8. | Photographs of RIM-cell and connections: (a) 12 in (305 mm) and 18 in (457 mm) diameter RIM-cells installed in reaction piles R1 and R5, (b) hydraulic hoses and PVC casing from embedded RIM-cell, and (c) PVC casing from RIM-cell attached to steel reinforcement                                                                                     | 9 |
| Figure 9. | Representative load-displacement behavior obtained using the RIM-cell (courtesy of Fugro / LOADTEST, Inc.)                                                                                                                                                                                                                                               | 9 |
| Figure 10 | <b>0.</b> (a) Typical ACIP pile rig components and (b) pile installation platform used for this project 1                                                                                                                                                                                                                                                | 1 |
| Figure 1  | 1. Excerpt of installation record for test pile C-2 – penetration depth, hydraulic pressure, and grout flow versus time recorded using AME                                                                                                                                                                                                               | 1 |
| Figure 12 | 2. Excerpt of installation record for test pile C-2 – penetration rate, hydraulic pressure, grout flow, and increment grout factor versus depth recorded using AME1                                                                                                                                                                                      | 2 |
| Figure 1. | 3. Compressive strength of grout at 7, 14, and 21 days                                                                                                                                                                                                                                                                                                   | 3 |
| Figure 14 | <b>4.</b> (a) Components of the data collection system and (b) probe measurement field set up at each test pile (Mullins and Johnson, 2017)                                                                                                                                                                                                              | 5 |
| Figure 1  | 5. Thermal profiles at 6-hr intervals during curing at (a) test pile C-2 and (b) test pile L-2 (Mullins and Johnson, 2017)                                                                                                                                                                                                                               | 5 |
| Figure 10 | 6. Field set up with thermal wires and attached data collection system (TAP units) at (a) test pile L-2 with center bar and reinforcement cage and (b) test pile T-1 with center bar (Mullins and Johnson, 2017)                                                                                                                                         | 6 |
| Figure 1' | 7. Thermal profiles for test pile E-1 t=15 hr after casting at (a) center bar and (b) at the reinforcement cage (Mullins and Johnson, 2017)                                                                                                                                                                                                              | 6 |
| Figure 18 | 8. Thermal generation and dissipation at the center bar for test pile E-1 at a distance of about 10 ft (3.05 m) from top of pile (Mullins and Johnson, 2017)                                                                                                                                                                                             | 7 |
| Figure 19 | 9. Compression load testing setup for (a,b) pile C-1 and (c) pile C-2                                                                                                                                                                                                                                                                                    | 8 |
|           | <b>0.</b> Compression load testing setup (hydraulic jack, load cell, and dial gages) for (a) pile C-1 and (b) pile C-2                                                                                                                                                                                                                                   |   |
| Figure 2  | 1. Load-displacement behavior of test piles (a) C-1 and (b) C-2 due to axial compression loading                                                                                                                                                                                                                                                         | 9 |

| <b>Figure 22.</b> Load-displacement behavior and estimated static axial capacity of test piles C-1 and C-2 due to axial compression loading (using measurements from the hydraulic jack only) | 20 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Figure 23.</b> Load distribution (load transfer) curves for test pile C-1 due to compression loading based on strain gauge measurements during the axial compression loading               |    |
| <b>Figure 24.</b> Load distribution (load transfer) curves for test pile C-2 due to compression loading based on strain gauge measurements during the axial compression loading               |    |
| Figure 25. Tension load testing setup for (a) pile T-1 and (b,c) pile T-2                                                                                                                     | 24 |
| Figure 26. Load-displacement behavior of test piles (a) T-1 and (b) T-2 due to tension loading                                                                                                | 24 |
| Figure 27. Lateral load testing setup for (a, b, c) pile C-1 and (d,e) pile C-2                                                                                                               | 25 |
| Figure 28. Load-displacement behavior of test piles (a) L-1 and (b) L-2 due to lateral loading                                                                                                | 26 |
| <b>Figure 29.</b> Preparation and setup for extraction of pile E-1: (a) drilling 14 in (356 mm) diameter relief holes around pile E-1, (b, c) reaction system setup for initial extraction    |    |
| <b>Figure 30.</b> (a,b) Extraction of pile E-1 using a crane attachment, and (c) extracted pile and manual measurements of the pile circumference                                             | 27 |
| Figure 31. (a) Measurements made from TIP wires and (b) estimated and measured radius of pile E-1                                                                                             | 28 |
| Figure 32. Load-displacement behavior for R-5 obtained using the RIM-cell                                                                                                                     | 29 |
| Figure A-1. CPT log R-6                                                                                                                                                                       |    |
| <b>Figure A-2.</b> CPT correlative parameter log R-6                                                                                                                                          | 33 |
| Figure A-3. CPT log R-8                                                                                                                                                                       | 34 |
| Figure A-4. CPT correlative parameter log R-8                                                                                                                                                 |    |
| Figure A-5. Soil boring log B-1 (L-1)                                                                                                                                                         | 36 |
| Figure A-5. Soil boring log B-1 (L-1) continued                                                                                                                                               |    |
| Figure A-6. Soil boring log B-2 (C-1)                                                                                                                                                         |    |
| Figure A-6. Soil boring log B-2 (C-1) continued                                                                                                                                               |    |
| Figure A-6. Soil boring log B-2 (C-1) continued                                                                                                                                               | 40 |
| Figure A-6. Soil boring log B-2 (C-1) continued                                                                                                                                               |    |
| <b>Figure A-7.</b> Soil boring log B-3 (T-1)                                                                                                                                                  | 42 |
| Figure A-7. Soil boring log B-3 (T-1) continued                                                                                                                                               | 43 |
| Figure A-7. Soil boring log B-3 (T-1) continued                                                                                                                                               | 44 |
| Figure A-7. Soil boring log B-3 (T-1) continued                                                                                                                                               | 45 |
| Figure A-8. Soil boring log B-4 (L-2)                                                                                                                                                         | 46 |
| Figure A-8. Soil boring log B-4 (L-2) continued                                                                                                                                               |    |
| Figure A-9. Soil boring log B-5 (C-2) continued                                                                                                                                               | 48 |
| Figure A-9. Soil boring log B-5 (C-2) continued                                                                                                                                               | 49 |
| Figure A-9. Soil boring log B-5 (C-2) continued                                                                                                                                               | 50 |
| Figure A-9. Soil boring log B-5 (C-2) continued.                                                                                                                                              | 51 |
| Figure A-9. Soil boring log B-6 (T-2)                                                                                                                                                         | 52 |
| <b>Figure A-9.</b> Soil boring log B-6 (T-2) <i>continued</i>                                                                                                                                 | 53 |

| <b>Figure A-9.</b> Soil boring log B-6 (T-2) <i>continued</i>                                                                                     | .54  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure A-9. Soil boring log B-6 (T-2) continued                                                                                                   | . 55 |
| <b>Figure B-1.</b> Sister bar calibration report: S/N 1631527                                                                                     | .57  |
| <b>Figure B-2.</b> Sister bar calibration report: S/N 1631528                                                                                     | .58  |
| <b>Figure B-3</b> . Sister bar calibration report: S/N 1631529                                                                                    | .59  |
| <b>Figure B-4.</b> Sister bar calibration report: S/N 1632090                                                                                     | 60   |
| <b>Figure B-5.</b> Sister bar calibration report: S/N 1632091                                                                                     | 61   |
| <b>Figure B-6.</b> Sister bar calibration report: S/N 1632092                                                                                     | 62   |
| <b>Figure B-7.</b> Sister bar calibration report: S/N 1632093                                                                                     | 63   |
| <b>Figure B-8.</b> Sister bar calibration report: S/N 1632094                                                                                     | 64   |
| <b>Figure B-9.</b> Sister bar calibration report: S/N 1632095                                                                                     | 65   |
| <b>Figure B-10.</b> Sister bar calibration report: S/N 1632096                                                                                    | 66   |
| Figure B-11. Sister bar calibration report: S/N 1632097                                                                                           | 67   |
| Figure B-12. Sister bar calibration report: S/N 1632098                                                                                           | .68  |
| <b>Figure B-13.</b> Sister bar calibration report: S/N 1632099                                                                                    | 69   |
| Figure B-14. Sister bar calibration report: S/N 1632100                                                                                           | .70  |
| Figure C-1. Material specification sheet for DSC Concentrate                                                                                      | .72  |
| Figure D-1. Photographs of drilling platform components : (a) gear box, (b) hydraulic power unit, and                                             |      |
| (c) grout pump                                                                                                                                    |      |
| Figure E-1. Installation record for test pile C-1 using AME                                                                                       |      |
| <b>Figure E-2.</b> Installation record for test pile C-2 using AME                                                                                |      |
| <b>Figure E-3.</b> Installation record for test pile T-1 using AME                                                                                |      |
| <b>Figure E-4.</b> Installation record for test pile T-2 using AME                                                                                |      |
| <b>Figure E-5.</b> Installation record for test pile L-1 using AME                                                                                |      |
| <b>Figure E-6.</b> Installation record for test pile L-2 using AME                                                                                |      |
| <b>Figure E-7.</b> Installation record for test pile E-1 using AME                                                                                | .83  |
| Figure F-1. Manual installation record for test pile C-1                                                                                          |      |
| <b>Figure F-2.</b> Manual installation record for test pile C-2                                                                                   |      |
| <b>Figure F-3.</b> Manual installation record for test pile T-1                                                                                   |      |
| <b>Figure F-4.</b> Manual installation record for test pile T-2                                                                                   |      |
| <b>Figure F-5.</b> Manual installation record for test pile L-1                                                                                   | .89  |
| <b>Figure F-6.</b> Manual installation record for test pile L-2                                                                                   |      |
| <b>Figure F-7.</b> Manual installation record for test pile E-1                                                                                   | .91  |
| <b>Figure G-1.</b> Temperature profile for pile C2 at peak temperature taken via probe system (Mullins and Johnson, 2017)                         | .93  |
| <b>Figure G-2.</b> Thermal profile of pile E-1 (extracted) at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017) | .94  |

| <b>Figure G-3.</b> Thermal profile of (a) pile T-1 and (b) pile T-2 at the center bar reinforcement (Mullins and Johnson, 2017)       | 95    |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>Figure G-4.</b> Thermal profile of pile C-2 at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017) | 96    |
| <b>Figure G-5.</b> Thermal profile of pile C-2 at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017) | 97    |
| Figure H-1. Calibration report for 100 ton hydraulic jack                                                                             | 99    |
| Figure H-1. Calibration report for 100 ton hydraulic jack continued                                                                   | . 100 |
| Figure H-1. Calibration report for 100 ton hydraulic jack continued                                                                   | 101   |
| Figure H-1. Calibration report for 100 ton hydraulic jack continued                                                                   | 102   |
| Figure H-2. Calibration report for 500 ton center hole hydraulic jack                                                                 | 103   |
| Figure H-2. Calibration report for 500 ton center hole hydraulic jack <i>continued</i>                                                | 104   |
| Figure H-2. Calibration report for 500 ton center hole hydraulic jack <i>continued</i>                                                | 105   |
| Figure H-2. Calibration report for 500 ton center hole hydraulic jack <i>continued</i>                                                | 106   |
| Figure H-3. Calibration report for 600 ton center hole load cell                                                                      | 107   |
| Figure H-3. Calibration report for 600 ton center hole load cell <i>continued</i>                                                     | 108   |
| Figure H-3. Calibration report for 600 ton center hole load cell <i>continued</i>                                                     | 109   |
| Figure H-3. Calibration report for 600 ton center hole load cell <i>continued</i>                                                     | 110   |
| Figure H-4. Calibration report for 1,000 ton hydraulic jack                                                                           | 111   |
| <b>Figure H-4.</b> Calibration report for 1,000 ton hydraulic jack <i>continued</i>                                                   | 112   |
| Figure H-5. Calibration report for 1,000 ton load cell                                                                                | 113   |
| Figure H-5. Calibration report for 1,000 ton load cell <i>continued</i>                                                               |       |

## **LIST OF TABLES**

| Table 1. Details of the ACIP test piles    5                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Steel reinforcement details for test piles   5                                                                       |
| Table 3. Details of grout mix design   10                                                                                     |
| Table 4. Compressive strength of grout at 7, 14, and 21 days of curing    12                                                  |
| Table 5. Pre-testing strain gage readings for the strain gages used in pile C-1                                               |
| <b>Table 6.</b> Pre-testing strain gage readings for the strain gages used in pile C-2                                        |
| Table 7. Computed axial loads and unit side resistance at the strain gauge locations in pile C-1                              |
| Table 8. Computed axial loads and unit side resistance at the strain gauge locations in pile C-2                              |
| Table 9. Measurement statistics about as-built construction of extracted pile E-1    27                                       |
| <b>Table D-1.</b> Specifications for drilling platform components: (a) gear box, (b) hydraulic power unit, and (c) grout pump |
| Table I-1. Load – displacement measurements during axial compression loading test of pile C-1 116                             |
| <b>Table I-2.</b> Strain gauge readings during axial compression loading test of pile C-1                                     |
| <b>Table I-3.</b> Load – displacement measurements during axial compression loading test of pile C-2 118                      |
| <b>Table I-4.</b> Strain gauge readings during axial compression loading test of pile C-2                                     |
| <b>Table J-1.</b> Load – displacement measurements during axial tension loading test of pile T-1121                           |
| <b>Table J-2.</b> Load – displacement measurements during axial tension loading test of pile T-2                              |
| <b>Table K-1.</b> Load – displacement measurements during lateral loading test of pile L-1                                    |
| <b>Table K-2.</b> Load – displacement measurements during lateral loading test of pile L-2                                    |
| Table L-1. Measurements of circumference of the extracted pile E-1                                                            |
|                                                                                                                               |

#### INTRODUCTION

An augered cast-in-place (ACIP) pile, as it is referred in the U.S., is a deep foundation technology that encompasses drilling a hole into the ground using a hollow stem auger that forms the diameter of the pile, which is then filled with a sand-cement grout or concrete and steel reinforcement elements. In amenable ground conditions and for certain project applications, ACIP piles can be more economical, can be constructed more quickly, and are a viable foundation alternative to other deep foundation techniques (e.g., driven piles and drilled shafts). ACIP piles have been used for support of structures, for lateral earth retention applications, for embankment support and in ground improvement applications.

One of the last major markets in the United States where augered cast-in-place (ACIP) piles are not routinely considered is on publically funded transportation projects under the auspices of state and federal departments of transportation (DOTs), especially for structural support of bridge columns, abutments, and piers/bents. According to FHWA, nearly twenty state DOTs and the FHWA Federal Lands Highway Division have approved the use of the ACIP pile technology on a project-by-project (or project specific) basis. ACIP piles are well suited for a variety of transportation project applications, including structure support for new bridges, bridge widening, sound wall foundations, column support for embankment construction, and secant pile walls for lateral earth support. In addition, ACIP piles provide a viable and cost effective solution in environmentally sensitive areas requiring minimal disturbance.

Geotechnical Engineering Circular No. 8 (GEC-8): *Design and Construction of Continuous Flight Auger* (CFA) Piles (Brown et al, 2007), which was sponsored and published by the Federal Highway Administration (FHWA) provides an excellent framework for contractors to provide performance-based specification alternates for certain projects. However, feedback from state DOTs has indicated continued uncertainty or a lack of understanding about the monitoring methods available to ensure quality and repeatability of ACIP pile installation and its (subsequent) performance.

The purposes of this research project were to demonstrate

- The fully monitored installation of instrumented ACIP piles, including the use of Automated Monitoring Equipment (AME)
- The use and accuracy of thermal integrity profiling (TIP) methods with ACIP piles
- The load-displacement behavior during compression, tension, and lateral load testing, including the use of and measurement by multiple strain gages embedded along the length of two piles
- The integrity and as-constructed geometry of an ACIP pile by extracting an installed pile for visual inspection.

To achieve the goals of the project, seven test piles were installed at a site in central Florida: two each for compression testing, tension testing, and lateral testing, and one pile for extraction and visual inspection. Additional ACIP piles were installed and used as reaction piles in conjunction with the load testing assembly.

At the start of this research project in 2016, the University of Florida was developing a database of Load and Resistance Factor Design (LRFD) values for ACIP piles for the Florida DOT, which was to be incorporated into the FL DOT Standard Specifications for Road & Bridge Construction. As such, the value of this research is that the results of this project will provide additional information to that LRFD database and specifications development and will provide a formal document that federal and state/local DOTs can reference regarding the constructability of ACIP piles and their acceptability for use in transportation projects. Ultimately, the results of this research will enable federal and state/local DOTs to provide a potentially more efficient foundation alternative for their projects, while ensuring integrity and reliability along with reducing public expenditures (i.e., tax dollars) on their projects. Working with the Florida DOT to develop appropriate specifications for the use and inclusion of ACIP piles in FL DOT's

Standard Specifications for Road and Bridge Construction will provide a framework for other state/local DOTs to reevaluate their practice on the use (or non-use) of ACIP piles. With the continued focus on the rehabilitation, repair, and expansion of U.S. infrastructure, the availability and acceptability of ACIP piles as a suitable foundation system for public works and transportation projects will be of significant economic benefit to the industry and public.

#### EXPERIMENTAL PROGRAM

#### PROJECT LOCATION

The demonstration project was performed in the southeast corner of Berkel & Company Contractors' Central Florida facility located in Okahumpka, Florida, which is about 35 mi (56 km) northwest of downtown Orlando. A general location map and an aerial view of the property, with the test location outlined, are shown in Figure 1.





Figure 1. Project location and aerial view of test area

#### SUBSURFACE CONDITIONS

In August 2016, two cone penetration tests (CPTs) were performed at the initial reaction pile locations R-6 and R-8 (Figure 2a). From the CPTs, the generalized subsurface profile across this zone is mostly sands down to a depth of about 40 ft (12.2 m), with stiff fine-grained soil from a depth of 15 to 22 ft (4.6 to 6.7 m) at R-6 and clay and from a depth of 30 to 40 ft (9.1 to 12.2 m) at R-8. Below a depth of about 40 ft (12.2 m) down to about 75 ft (22.9 m), the subsurface profile consisted of alternating layers of varying thickness consisting of sands, clays, silts, and silt/sand mixtures, where silt/sand mixture and clay were more prominent at R-6 and sand and sand mixtures were more prominent at R-8.

At location R-6, the CPT results indicated very loose soil conditions below a depth of about 55 ft (16.8 m), indicating potential relic sinkhole conditions. To avoid possible problems around R-6, the testing configuration was rotated and repositioned to the southern extent of the test area (Figure 1), as shown in Figure 2b. In September 2016, soil borings were performed and standard penetration test (SPT) blow counts (N-values) using a manual safety hammer were obtained by personnel from FL DOT. Based on the descriptions from the soil borings logs, the general subsurface profile consists mainly of sand and silty sand. A strata of clay was noted in four of the six soil borings (B-1 [L-1], B-4 [L-2], B-5 [C-2], and B-6



Figure 2. Layout of ACIP test piles and reaction piles: (a) original and (b) revised

[T-2]), and it was present at different depths (from 25 to 55 ft [7.6 to 16.8 m]) but of almost constant thickness (about 10 ft [3 m]). The depth to the groundwater table was noted as about 13 ft (4.0 m) in soil boring B-1 (L-1) only.

The soil boring (hand written) logs include details about the drilling, on site visual soil classifications, and SPT N-values. A profile of the SPT N-value variation with depth is delineated in Figure 3. CPT sounding profiles and soil boring logs are provided in Appendix A.



Figure 3. SPT N-value variation with depth

#### **TEST PILES - DETAILS**

Based on the results of the site characterization, the details of the testing program (e.g., geometry, layout, loading, and instrumentation) were finalized. Seven ACIP test piles and 11 ACIP reaction piles were installed at the site in October 2016 (Figure 3). The diameters of the test piles were either 18 or 24 in (457 or 610 mm) and the depths of embedment were either 40 or 60 ft (12.2 or 18.3 m). Design details and steel reinforcement details are provided in Tables 1 and 2, respectively.

#### INSTRUMENTATION

Thermal integrity profiling (TIP) methods were used in conjunction with the research project to evaluate their feasibility with ACIP piles, and, as such, were incorporated into each of the test piles. The TIP process involves monitoring and recording the temperature of the concrete or grout within a cast-in-place pile during its curing, especially near the peak heat of hydration. Two means of instrumentation can be used with the TIP method: (a) use of a thermal probe inserted into an access tube embedded within the pile, and/or (b) use of thermal wires containing thermistors located at intervals of about 12 in (0.3 m) along the spool length. The general concept of the TIP method is that a good quality and uniform pile will have a uniform temperature profile along its length.

**Table 1.** Details of the ACIP test piles

| Pile   | Pile               | Embedment       | En                  | nbeds a     | and Insti     | on                | Estimated       | Max. Test Load       |                           |  |
|--------|--------------------|-----------------|---------------------|-------------|---------------|-------------------|-----------------|----------------------|---------------------------|--|
| Desig. | Diameter inch [mm] | Depth<br>ft [m] | # TIP<br>Wires      | PVC<br>Tube | Steel<br>Tube | TIP<br>Probe      | Strain<br>Gauge | Capacity<br>ton [kN] | to be Applied<br>ton [kN] |  |
| C1     | 18<br>[457]        | 40<br>[12.2]    | 4 Partial<br>1 Full |             |               |                   | Yes             | 220<br>[1957]        | 600<br>[5338]             |  |
| L1     | 18<br>[457]        | 40<br>[12.2]    | 4 Partial<br>1 Full |             |               |                   |                 | 16<br>[142]          | 40<br>[356]               |  |
| T1     | 18<br>[457]        | 40<br>[12.2]    | 0 Partial<br>1 Full |             |               |                   |                 | 205<br>[1824]        | 400<br>[3559]             |  |
| C2     | 24<br>[610]        | 60<br>[18.3]    | 4 Partial<br>1 Full |             | 4             | Partial<br>Length | Yes             | 285<br>[2535]        | 900<br>[8007]             |  |
| L2     | 24<br>[610]        | 60<br>[18.3]    | 4 Partial<br>1 Full | 4           |               | Partial<br>Length |                 | 30<br>[267]          | 40<br>[356]               |  |
| T2     | 24<br>[610]        | 60<br>[18.3]    | 0 Partial<br>1 Full |             |               |                   |                 | 265<br>[2358]        | 400<br>[3559]             |  |
| E1     | 18<br>[457]        | 40<br>[12.2]    | 4 Partial<br>1 Full |             |               |                   |                 |                      |                           |  |

Table 2. Steel reinforcement details for test piles

| Pile   | Pile               | Center Ba                        | <u>ır</u>        | Rebar Cage           |                 |                                                                                                                                |  |  |  |
|--------|--------------------|----------------------------------|------------------|----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Desig. | Diameter inch [mm] | Size and<br>Grade                | Length<br>ft [m] | Longitudinal<br>Bars | Length          | Shear Reinforcement                                                                                                            |  |  |  |
| C1     | 18<br>[457]        | #11 (No. 36)<br>Gr. 60 (Gr. 420) | 40<br>[12.2]     | 8 - #8<br>[No. 25]   | 35 ft<br>[10.7] | Top 6 ft (1.8 m): #3 (No. 10) ties at 4 in (102 mm) on center<br>Remainder: #3 (No. 10) ties at 12 in (305 mm) on center       |  |  |  |
| L1     | 18<br>[457]        | #11 (No. 36)<br>Gr. 60 (Gr. 420) | 40<br>[12.2]     | 8 - #8<br>[No. 25]   | 35 ft<br>[10.7] | Top 6 ft (1.8 m): #3 (No. 10) ties<br>at 4 in (102 mm) on center<br>Remainder: #3 (No. 10) ties at<br>12 in (305 mm) on center |  |  |  |
| T1     | 18<br>[457]        | 3 in [76 mm]<br>Gr. 150          | 40<br>[12.2]     |                      |                 |                                                                                                                                |  |  |  |
| C2     | 24<br>[610]        | #11 (No. 36)<br>Gr. 60 (Gr. 420) | 60<br>[18.3]     | 12 - #8<br>[No. 25]  | 35 ft<br>[10.7] | Top 8 ft (2.4 m): #3 (No. 10) ties<br>at 6 in (102 mm) on center<br>Remainder: #3 (No. 10) ties at<br>12 in (305 mm) on center |  |  |  |
| L2     | 24<br>[610]        | #11 (No. 36)<br>Gr. 60 (Gr. 420) | 60<br>[18.3]     | 12 - #8<br>[No. 25]  | 35 ft<br>[10.7] | Top 8 ft (2.4 m): #3 (No. 10) ties<br>at 6 in (102 mm) on center<br>Remainder: #3 (No. 10) ties at<br>12 in (305 mm) on center |  |  |  |
| T2     | 24<br>[610]        | 3 in [76 mm]<br>Gr. 150          | 60<br>[18.3]     |                      |                 |                                                                                                                                |  |  |  |
| E1     | 18<br>[457]        | 3 in [76 mm]<br>Gr. 150          | 40<br>[12.2]     | 8 - #8<br>[No. 25]   | 40 ft<br>[12.2] | #3 (No. 10) ties at 12 in (305 mm) on center                                                                                   |  |  |  |

The expected temperature at any location is dependent on the diameter of the pile, grout or concrete mix design, time of measurement, and the distance from the TIP sensor to the center and edge of the pile (Figure 4). TIP measurements can be used to estimate the actual shape of the pile element, which can be compared with the concreting or grouting records to assess the overall quality of the pile. Because the method relies on the heat of hydration, TIP testing begins soon after placement of the grout or concrete, generally between 8 and 48 hours after placement. Smaller diameter piles are typically tested earlier in the range of testing times, as the heat of hydration in these elements is able to dissipate relatively quicker than larger diameter piles. TIP sensor measurements indicating temperatures that are cooler than normal indicate inclusions, necking or poor quality concrete, whereas measurements indicating temperatures warmer than normal are indicative of bulges outside of the cage diameter. Variations in temperature between diagonally opposite pairs of thermal wire cables reveal cage eccentricities (i.e., misalignment).



**Figure 4.** Distribution of temperature profile across and along an idealized uniform cast-in-place concrete pile (Mullins and Johnson, 2016)

In coordination with the University of South Florida under its contract with FDOT (BDV25 977-34), a combination of TIP methods (i.e., thermal wire and probe) were used to collect thermal data about the grout over time to compare the two instrumentation methods and analysis techniques. Thermal wires only were instrumented on test piles C1, L1, and E1 where they were secured with plastic wire ties to the center reinforcement bar and to longitudinal bars on the rebar cage at 12 in (305 mm) vertical intervals. For piles T1 and T2, thermal wires were secured to the center reinforcement bar. As indicated in Table 1, both thermal wires and access tubes for TIP probes were embedded in piles C2 and L2, where the thermal wires were attached to the center bar reinforcement and to the steel (C2) or PVC (L2) access tubes. In addition, pile E1 was extracted and was used to evaluate the construction installation methods, to assess the validity of quality control / quality assurance (QC/QA) methods, and to serve as a baseline or control for the TIP analysis comparison. Photographs of different TIP configurations used in the testing program are shown in Figure 5.



**Figure 5.** Photographs of TIP configurations used: (a) thermal wires attached to rebar cage, (b,c) thermal wires attached to PVC tubes and rebar cage (L2), (d) thermal wires attached to steel tubes and rebar cage (C2), and (e) thermal wires and vibrating wire strain gages attached to No. 11 center bars. Source for (c) and (d): Mullins and Johnson (2017).

Vibrating wire strain gages were installed in the 18 in (457 mm) and 24 in (610 mm) diameter compression piles (C1 and C2, respectively). A photograph and schematics of an embedment strain gauge are shown in Figure 6. Sister-bar mounted gages were attached to the steel center bar near the top of the pile (depth of 2 ft [0.6 m], near the bottom of the pile (depth of 58 ft [17.7 m], and at 10 ft (3.05 m) intervals throughout the length of the pile, as shown in Figure 7. Calibration reports for each of the sister bar strain gages are provided in Appendix B.

As a late adjustment to the program, RIM-cells (bi-directional production load test cells) were installed in two reaction piles: R1 (18 in [457 mm] diameter) and R5 (24 in [610 mm] diameter). The RIM-cell is a tool used in conjunction with the QC/QA program and the results provide confirmation of performance (i.e., piles / shafts loaded up to about 30% greater than the design load). Given the large open center in the apparatus, the devices were attached to the bottom of the rebar cages and placed as a unit into the wet grout to a depth such that the bottom of each cell was about 6 in (152 mm) above the toe of its respective pile. Photographs of the cells and their connections are shown in Figure 8. A representative graph of the load-displacement behavior obtained using the RIM-cell is shown in Figure 9.



**Figure 6.** Geokon Model 4911 vibrating wire rebar strain meters: (a) photograph of a complete sister bar setup, and (b) schematic showing components of device (http://www.geokon.com)



Figure 7. Arrangement of strain gages in test piles (a) C1 and (b) C2



**Figure 8.** Photographs of RIM-cell and connections: (a) 12 in (305 mm) and 18 in (457 mm) diameter RIM-cells installed in reaction piles R1 and R5, (b) hydraulic hoses and PVC casing from embedded RIM-cell, and (c) PVC casing from RIM-cell attached to steel reinforcement



**Figure 9.** Representative load-displacement behavior obtained using the RIM-cell (courtesy of Fugro / LOADTEST, Inc.)

#### **GROUT MIX**

Based on the anticipated target test loads, the grout mix used for the test piles and reaction piles was designed for a minimum compressive strength of 6,000 psi (41.4 MPa). The grout mix consisted of Portland Type I/II cement, sand (fine aggregate), fly ash, water, and DSC Concentrate (a water reducing admixture). The design and components of the grout mix are provided in Table 3. The DSC Concentrate is a water reducing grout fluidifier that is especially designed for use with ACIP piling grouts, and it is intended to minimize bleeding and setting shrinkage while maintaining a fluid, yet cohesive grout. The description and material specifications for the DSC Concentrate are provided in Appendix C.

Table 3. Details of grout mix design

| Parameters                              | Value                            |
|-----------------------------------------|----------------------------------|
| Compressive strength 28 days, psi (MPa) | 6000 (41.4)                      |
| Cement content (Type I/II), lb (kg)     | 940 (426)                        |
| Fly ash, lb (kg)                        | 180 (82)                         |
| Fine aggregate sand, lb (kg)            | 1900 (862)                       |
| Water content, gallon (liter)           | 45 to 50 (170 to 189)            |
| Admixture, DSC Concentrate              | 7 lb (3.2 kg) per truck of grout |
| Maximum water/cement (w/c) ratio        | 0.42                             |
| Flow rate of fluid grout (sec)          | 17 to 20                         |
| Plastic unit weight, lb/ft³ (kN/m³)     | 134 (21.1)                       |

#### DRILLING EQUIPMENT AND MONITORING SYSTEM

A schematic of a typical pile rig used for ACIP pile installation and a photo of the fixed leads crane-mounted drilling platform used to drill the piles for this project are presented in Figure 10a and 10b, respectively. As part of the drilling platform, the specifications of the grout pump, gear box, and hydraulic power pack are provided in Appendix D.

Automated Monitoring Equipment (AME) was used to monitor and record various installation parameters, such as auger rotation rate, depth of penetration of the auger tooling, hydraulic fluid pressure supplied to the turntable, and incremental and total volume/flow of grout supplied. Manual monitoring and measurement recording was performed to provide the contractor and inspector(s) corroborating data of the installation parameters, supplemental information not captured by the AME, and a backup measurement of the installation parameters and data in the event of a malfunction with the AME. Typically, the data recorded by the AME is stored in electronic format and available for download for subsequent processing, and most modern AME systems have software that facilitate post-installation processing and report preparation.

The different AME used during the installation of the test piles and reaction piles is described below.

- A display unit/monitor with a real-time clock in the cab is used to show, numerically and/or graphically, the operator and/or inspector the parameters being monitored, measured, and recorded by the various sensors during installation.
- A depth sensor is used to measure the pile depth and the rates of penetration and withdrawal. The depth sensor may consist of (a) a rotary encoder on self-retracting cable spool attached to drill top or gear box, (b) a spring loaded rotary encoder mounted on the gear box and in constant contact with the leads to monitor auger tip depth at all times during installation, or (c) a proximity sensor mounted on the main winch calibrated to convert winch rotation to tool depth.
- Rotation sensors allow the rotation rate to be viewed on the display unit in the cab. These sensors consist of (a) a proximity switch on the rotary head/gearbox or (b) a flow measurement of the hydraulic fluid pressure that is applied to the rotary head and that is calibrated with rotation rate.
- Rotary head pressure sensors are used to monitor the hydraulic pressure provided to the gearbox. On some equipment, the hydraulic pressure can be converted to torque; on others, the torque is computed using hydraulic pressure and rotational pressure.
- A magnetic flow meter measures the volume of grout pumped through the system. A magnetic flow meter is installed in the grout line near the drilling platform, and is equipped with exposed electrodes that must be in contact with the conductive fluid (i.e., grout).



Figure 10. (a) Typical ACIP pile rig components and (b) pile installation platform used for this project

#### **INSTALLATION RECORDS**

The grout volumes used in the test piles and reaction piles were measured using the AME (i.e., using a magnetic flow meter and calculated for each 2 ft (0.6 m) increment of the pile length. The increment length at the bottom of the pile was automatically adjusted based on the pile length recorded by the AME. Excerpts of the installation record for test pile C-2 recorded using AME are shown in Figures 11 (parameter versus time) and 12 (parameter versus depth). In addition, per agreement with FL DOT inspectors on site to witness the installation, the volume of grout was recorded manually using a count of the calibrated strokes of the grout pump. The records of the measurements taken using the AME and manually during installation are presented in Appendices E and F, respectively.



**Figure 11.** Excerpt of installation record for test pile C-2 – penetration depth, hydraulic pressure, and grout flow versus time recorded using AME



**Figure 12.** Excerpt of installation record for test pile C-2 – penetration rate, hydraulic pressure, grout flow, and increment grout factor versus depth recorded using AME

#### PRE-LOAD TESTING MONITORING

#### **COMPRESSIVE STRENGTH TESTING OF GROUT**

Grout samples were collected and tested according to ASTM C109 / C109M-16a (ASTM, 2016) for testing of the grout cubes at three different curing times. Two samples from each pile were tested at 7, 14, and 28 days after the pile was installed. The individual unconfined compressive strengths for each sample along with the average unconfined compressive strength for all of the samples at each curing time are presented in Table 4 and Figure 13.

Table 4. Compressive strength of grout at 7, 14, and 21 days of curing

| Pile     | Sample    | Compressive Strength of Grout |       |        |       |        |       |  |  |  |
|----------|-----------|-------------------------------|-------|--------|-------|--------|-------|--|--|--|
| Desig.   | No.       | 7 d                           | lay   | 14     | day   | 21 day |       |  |  |  |
|          |           | (psi)                         | (MPa) | (psi)  | (MPa) | (psi)  | (MPa) |  |  |  |
| E1       | 2         | 6173                          | 42.6  | 6430   | 44.3  | 7560   | 52.1  |  |  |  |
| L1       | 3         | 5860                          | 40.4  | 6750   | 46.5  | 7610   | 52.5  |  |  |  |
| C1       | 4         | 5620                          | 38.7  | 6650   | 45.9  | 7160   | 49.4  |  |  |  |
| T1       | 5         | 6070                          | 41.9  | 6910   | 47.6  | 7430   | 51.2  |  |  |  |
| L2       | 6         | 5230                          | 36.1  | 6220   | 42.9  | 6670   | 46.0  |  |  |  |
| C2       | 7         | 6040                          | 41.6  | 6070   | 41.9  | 8710   | 60.1  |  |  |  |
| T2       | 8         | 5250                          | 36.2  | 5800   | 40.0  | 7940   | 54.7  |  |  |  |
| Average  |           | 5749.0                        | 39.6  | 6404.3 | 44.2  | 7582.9 | 52.3  |  |  |  |
| Standard | Deviation | 390.5                         | 2.7   | 397.3  | 2.7   | 637.0  | 4.4   |  |  |  |



Figure 13. Compressive strength of grout at 7, 14, and 21 days

#### STRAIN GAGE MEASUREMENTS

Measurements recorded by the strain gages were collected after the instruments were attached to the steel reinforcement bars prior to insertion into the fresh grout. In addition, measurements from the embedded strain gages were collected soon after the bars were installed into the fresh grout, and then again on four subsequent dates but prior to the load testing of the piles (Tables 5 and 6). The gage (1632094) at a depth of about 30 ft (9.1 m) in pile C-1 and the top gage (1632100) in pile C-2 were apparently damaged during installation; consequently, no post-installation data is available for these two gages.

**Table 5.** Pre-testing strain gage readings for the strain gages used in pile C-1

| Coriol           | Social Donth <u>27-Oct-2016</u> |                             | 27-Oct-2016 04-Nov-2016 |                             |              | 2016                        | <u>10-Nov-</u> | 2016                        | 16-Nov-2016  |                             | 23-Nov-2016  |                             |              |
|------------------|---------------------------------|-----------------------------|-------------------------|-----------------------------|--------------|-----------------------------|----------------|-----------------------------|--------------|-----------------------------|--------------|-----------------------------|--------------|
| Serial<br>Number | Depth<br>(ft)                   | Reading $(\mu \varepsilon)$ | Temp<br>(°C)            | Reading $(\mu \varepsilon)$ | Temp<br>(°C) | Reading $(\mu \varepsilon)$ | Temp<br>(°C)   | Reading $(\mu \varepsilon)$ | Temp<br>(°C) | Reading $(\mu \varepsilon)$ | Temp<br>(°C) | Reading $(\mu \varepsilon)$ | Temp<br>(°C) |
| 1632099          | 2                               | 6811                        | 32.8                    | 6827                        | 31.4         | 6791                        | 23.8           | 6792                        | 21.6         | 6791                        | 19.0         | 6777                        | 16.4         |
| 1632097          | 10                              | 6956                        | 33.9                    | 6957                        | 34.0         | 6913                        | 28.3           | 6912                        | 27.6         | 6911                        | 27.1         | 6901                        | 26.5         |
| 1632095          | 20                              | 6731                        | 33.4                    | 6720                        | 34.3         | 6759                        | 27.1           | 6745                        | 27.0         | 6738                        | 27           | 6732                        | 26.8         |
| 1632094          | 30                              | 6890                        | 34.1                    | n/a                         | n/a          | n/a                         | n/a            | n/a                         | n/a          | n/a                         | n/a          | n/a                         | n/a          |
| 1632091          | 40                              | 6828                        | 32.7                    | 6833                        | 33.2         | 6581                        | 25.6           | 6589                        | 25.4         | 6585                        | 25.3         | 6573                        | 25.2         |
| 1631529          | 50                              | 6939                        | 32.2                    | 6938                        | 31.9         | 6801                        | 25.2           | 6791                        | 25.0         | 6788                        | 24.7         | 6778                        | 24.5         |
| 1631528          | 58                              | 6998                        | 32.8                    | 6991                        | 33.1         | 6905                        | 24.9           | 6910                        | 24.6         | 6908                        | 24.4         | 6898                        | 24.3         |

Pre-install Post-install Embedded within the pile

**Table 6.** Pre-testing strain gage readings for the strain gages used in pile C-2

| Serial<br>Number | Depth<br>(ft) | 27-Oct-2016         |      | 27-Oct-2016 |      | 04-Nov-2016         |      | 10-Nov-2016 |      | 16-Nov-2016 |      | 23-Nov-2016 |      |
|------------------|---------------|---------------------|------|-------------|------|---------------------|------|-------------|------|-------------|------|-------------|------|
|                  |               | Reading             | Temp | Reading     | Temp | Reading             | Temp | Reading     | Temp | Reading     | Temp | Reading     | Temp |
|                  |               | $(\mu \varepsilon)$ | (°C) | (με)        | (°C) | $(\mu \varepsilon)$ | (°C) | (με)        | (°C) | (με)        | (°C) | (με)        | (°C) |
| 1632100          | 2             | 6764                | 22.6 | n/a         | n/a  | n/a                 | n/a  | n/a         | n/a  | n/a         | n/a  | n/a         | n/a  |
| 1632098          | 10            | 6744                | 23.5 | 6746        | 35.8 | 6711                | 29.9 | 6717        | 28.1 | 6714        | 27.5 | 6703        | 26.9 |
| 1632096          | 20            | 6767                | 27.2 | 6755        | 35.6 | 6663                | 28.8 | 6672        | 27.5 | 6669        | 27.2 | 6660        | 27.1 |
| 1632093          | 30            | 6593                | 34.2 | 6587        | 35.5 | 6462                | 27.6 | 6475        | 26.5 | 6475        | 26.3 | 6464        | 26.3 |
| 1632092          | 40            | 6964                | 32.6 | 6960        | 33.8 | 6683                | 25.5 | 6708        | 24.6 | 6718        | 24.4 | 6716        | 24.2 |
| 1632090          | 50            | 6935                | 34.2 | 6923        | 34.7 | 6703                | 26.2 | 6721        | 25.2 | 6721        | 24.9 | 6710        | 24.7 |
| 1631527          | 58            | 7010                | 31.4 | 6990        | 33.7 | 6722                | 25.5 | 6739        | 24.7 | 6742        | 24.5 | 6734        | 24.3 |

Pre-install Post-install Embedded within the pile

#### THERMAL MEASUREMENTS

Thermal integrity profiling (TIP) wire and probe readings were collected by researchers from the University of South Florida (USF) soon after the piles were installed and at different times within the first few days after installation and grout placement. The research study evaluated the type of measurement system (i.e., probe system vs. thermal wire), access tube material (i.e., steel tube vs. PVC tube), measurement location (i.e., at center bar vs at cage reinforcement), and prediction of pile radius based on temperature and grout volume. The following section will provide a brief synopsis of the results of the TIP setup, measurements, and results; however, complete details about the research, results, interpretations, and conclusions can be found in the two reports authored by Mullins and Johnson (2016, 2017) for FL DOT. Select photographs and records of the measurements made by the researchers are presented in Appendix G.

#### **Thermal Probes**

TIP measurements using the probe system were performed in general accordance with ASTM D7949 (2014), wherein thermal measurements were made using an automated, reel-type system as the probe descended at a prescribed rate of 0.3 to 0.5 ft/sec (9 to 15 cm/sec). As described by Mullins and Johnson (2017), TIP measurements using the probe were performed twice (at each interval) for each tube in the pile at 6, 12, 18, and 24 hours after each test pile was cast (i.e., grouted). Photographs of the components and field set up at each test pile are shown in Figure 14. Graphical delineations of temperature versus depth at 6, 12, 18, and 24 hours after casting for test piles C-2 and L-2 are shown in Figure 15.

#### **Thermal Wires**

Thermal wires containing multiple thermistors were attached to the center reinforcement bar and/or the steel reinforcement cage to capture and record continuous thermal data as the pile's grout cured. The thermal wires were connected at the surface to removable data collectors (i.e., thermal access ports or TAP units) onto which the data was recorded and stored for later processing and analysis. Photographs of the field set up (thermal wires and TAP units) for piles with center bar and reinforcement cage and with only center bar reinforcement are shown on Figure 16. Representative graphical delineations of temperature versus depth for test pile E-1 at t=15 hr after casting at the center bar and at the reinforcement cage are shown in Figure 17. Because thermal data can be collected continuously (by the TAP unit

attached to a thermal wire), thermal generation and dissipation (versus time) can be determined and evaluated, as shown in Figure 18.



**Figure 14.** (a) Components of the data collection system and (b) probe measurement field set up at each test pile (Mullins and Johnson, 2017)



**Figure 15.** Thermal profiles at 6-hr intervals during curing at (a) test pile C-2 and (b) test pile L-2 (Mullins and Johnson, 2017)





**Figure 16.** Field set up with thermal wires and attached data collection system (TAP units) at (a) test pile L-2 with center bar and reinforcement cage and (b) test pile T-1 with center bar (Mullins and Johnson, 2017)



**Figure 17.** Thermal profiles for test pile E-1 t=15 hr after casting at (a) center bar and (b) at the reinforcement cage (Mullins and Johnson, 2017)



**Figure 18.** Thermal generation and dissipation at the center bar for test pile E-1 at a distance of about 10 ft (3.05 m) from top of pile (Mullins and Johnson, 2017)

#### **Observations and Interpretations**

Mullins and Johnson (2017) presented and discussed the various observations made during the testing and their subsequent interpretations of the recorded data and observations. The following provides a brief summary of the pertinent findings.

- TIP probe system vs. thermal wires:
  - Recorded measurements for both systems were in relatively close agreement.
- PVC vs. steel access tubes:
  - PVC access tubes appeared to be better than steel access tubes for the smaller diameter elements (e.g., smaller volumes for ACIP piles than for larger diameter drilled shafts) where the steel access tubes may have acted as heat sinks during the hydration process.
- Center bar vs. reinforcement cage:
  - Thermal wires attached to the central bar reinforcement
    - The shape of the ACIP pile was estimated relatively accurately, but the predictions are highly dependent upon the grout volume pumped (i.e., flow or pump strokes per depth increment).
    - The deviation in the alignment of the installed center bar reinforcement may not be detected.
  - Measurements at the reinforcement cage:
    - The ACIP pile shape and offset / eccentricity of the cage was able to be determined using either system (i.e., probe or thermal wire) as long as four TIP sensors were used.
  - When performing thermal analyses for piles that are greater than 2 ft (610 mm) in diameter, thermal measurements (using a minimum of four probe or thermal wire locations) should be made at the reinforcement cage and not at the center bar (only).
- Automated monitoring equipment (AME):
  - Data recorded using AME included grout flow rate, grout volume pumped, penetration rate, depth of auger, and grout pressure; however, only the grout volume is required to perform the thermal analyses.
  - Radius profiles could be predicted from manual pump stroke counts, grout factor per depth interval, cumulative volume changes per depth interval, and flow rate divided by extraction rate.

- The determination of the true amount of waste grout volume was difficult (e.g., initial pump strokes or some portion of grout volume after the grout return is observed).
- As-built data and radius predictions
  - Recommended not using traditional evaluation algorithms and best fit projections from hyperbolic temperature-radius (T-R) curves (for piles > 2 ft (610 mm) in diameter).
  - In general, lower temperature measurements result in a smaller predicted radius, whereas higher temperature measurements result in a larger predicted radius. Potential errors could result from misalignment or eccentricity of the center bar and/or reinforcement cage. When coupled with the injected grout volume, the potential errors could yield under and over predictions of the radius with depth.
  - There is typically minimal misalignment or eccentricity near the top of the pile. However, the reinforcement was misaligned noticeably (i.e., up to 5.5 in (140 mm) for the 18 in (457 mm) diameter piles and up to 7.5 in (190 mm) for 24 in (610 mm) diameter piles) deeper in the piles, which corresponded to potential errors in radius predictions of 1 to 2 in (25 to 51 mm).

#### LOAD TESTING RESULTS AND DISCUSSION

Full-scale compression, tension, and lateral load testing was performed on piles C-1, C-2, T-1, T-2, L-1, and L-2 in general accordance with the applicable ASTM standards. Calibration data for the strain gages, load cells and hydraulic jacks/gages used in this test program are included in Appendix H. Pile E-1 was extracted using a combination of drilled relief holes around the pile, partial extraction using the load frame setup, and pullout using a crane and attachments. The load testing and extraction of the installed test piles was performed from 30 November to 08 December.

#### **COMPRESSION LOAD TESTS**

The axial compression tests were performed in general accordance with ASTM D1143 / D1143M-07, Quick Load Method (ASTM, 2013a). As shown in Figures 19 and 20, axial compressive loads were applied manually using a hydraulic jack that was aligned concentrically with the installed piles (C-1 and C-2). During the loading phase, additional loads were applied in 15 ton (133 kN) increments at approximately 5 minute intervals. For each load increment, the applied load was increased to or above the target load (for that increment), and was maintained (i.e., no additional loads were applied) during the interval between readings. The applied loads were measured using a gage on the jack as well as an electronic load cell located between the pile and the reaction frame.







Figure 19. Compression load testing setup for (a,b) pile C-1 and (c) pile C-2





**Figure 20.** Compression load testing setup (hydraulic jack, load cell, and dial gages) for (a) pile C-1 and (b) pile C-2

Measurements of the pressure in the hydraulic jack, the load in the cell, and displacements from the dial gages were made and recorded at the beginning and ending of each loading interval. Induced displacements at the top of pile (i.e., pile head) were measured and recorded using four dial gages, which were located at approximately equal spacing around the top of the pile. Before continuing to the next load increment, the loaded pile was allowed to achieve equilibrium under the applied loading during an interval, such that the applied load was not decreasing due to deflections either at the pile-head or in the reaction frame. Each pile was loaded until continuous downward vertical movement of the pile-head was observed (i.e., plunging was initiated) at a constant applied load (i.e., geotechnical failure was achieved).

The load-displacement responses of test piles C-1 and C-2 due to the applied axial compression loading are plotted in Figure 21. As observed in Figure 21 for both compression tests, there was poor agreement between loads determined using the hydraulic jack and the electronic load cell. This discrepancy was likely due to the electronic load cell, which is typically more precise in its measurements, but it is more susceptible to be negatively affected by changes in moisture and temperature and due to disturbance caused during transportation. Therefore, for the purposes of comparison for this demonstration project, only the results measured using the hydraulic jack will be considered (Figure 22); however, all of the data measured using the hydraulic jack and the electronic load cell during the testing are presented in Appendix I.



Figure 21. Load-displacement behavior of test piles (a) C-1 and (b) C-2 due to axial compression loading



**Figure 22.** Load-displacement behavior and estimated static axial capacity of test piles C-1 and C-2 due to axial compression loading (using measurements from the hydraulic jack only)

Piles C-1 and C-2 were incrementally loaded until no additional load could be resisted; essentially resulting in a geotechnical failure (i.e., plunging) for each pile. As shown in Figure 22, the maximum applied load (i.e., maximum resistance) was about 447 ton (3980 kN) and 371 ton (3300 kN) for piles C-1 and C-2, respectively. Based on the method reported in the initial write up, the estimated capacity of test piles C-1 and C-2 were computed as 220 ton (1957 kN) and 285 ton (2535 kN), respectively.

Had geotechnical failure not been realized, the axial capacity or resistance of the tested piles C-1 and C-2 would have been determined using the Butler-Hoy criterion (Butler and Hoy, 1977). As described in Stuedlein et al. (2009), the Butler-Hoy failure criterion is one of the approaches approved in the International Building Code (IBC) for the determination of axial capacity of a pile when geotechnical failure (i.e., plunging) is not achieved during a static compression load test. The Butler-Hoy Criterion estimates the axial capacity of the pile at the intersection of two lines: the first of which is tangent to the initial slope of the load-displacement curve, and the second line has a slope equal to 0.05 inch/ton and is tangent to the load-displacement curve.

For pile C-1, the axial load  $(Q_{ax,i})$  at each strain gauge location was determined by multiplying the measured / recorded strain  $(\varepsilon_{ax,i})$  by the composite section modulus  $(E_{comp,C1})$  and the estimated cross-sectional area  $(A_i)$  at the respective strain gauge location, as reflected in the following equation:  $Q_{ax,i} = \varepsilon_{ax,i}E_{comp,C1}A_i$ . The composite modulus, which incorporates contributions from the grout and steel reinforcement, was estimated by back calculating the modulus using the top strain gauge at each load increment and the adjusted pile diameter (based on the measured vs. planned circumferences of the extracted pile, E1). The computed axial loads and unit side resistance at the strain gauge locations in pile C-1 are shown in Table 7. The load transfer behavior for pile C-1 is shown in Figure 23 (additional evaluation of the strain dependent modulus will be performed after submission of this final report). Measurements of axial strain from the embedded strain gauges were recorded at each load increment throughout the load tests, and are provided in Appendix I.

Table 7. Computed axial loads and unit side resistance at the strain gauge locations in pile C-1

|                                  | Strain Gauge No. |       |       |       |       |       |  |  |
|----------------------------------|------------------|-------|-------|-------|-------|-------|--|--|
|                                  | 1                | 2     | 3     | 4     | 5     | 6     |  |  |
| Depth (ft)                       | 2                | 10    | 20    | 40    | 50    | 60    |  |  |
| Incremental Length (ft)          |                  | 8     | 10    | 20    | 10    | 10    |  |  |
| Load at Strain Gauge (ton)       |                  |       |       |       |       |       |  |  |
| Measured                         | 347              | 311   | 285   | 177   | 124   | 75    |  |  |
| Predicted                        | 0                | 27    | 54    | 144   | 194   | 234   |  |  |
| Shaft Resistance (ton)           |                  |       |       |       |       |       |  |  |
| Measured                         |                  | 36    | 26    | 108   | 53    | 49    |  |  |
| Predicted                        | l                | 27    | 27    | 90    | 50    | 40    |  |  |
| Unit Side Resistance (ton/sq ft) |                  |       |       |       |       |       |  |  |
| Measured                         | -                | 0.966 | 0.552 | 1.146 | 1.117 | 1.303 |  |  |
| Predicted                        |                  | 0.716 | 0.573 | 0.955 | 1.061 | 1.061 |  |  |



**Figure 23.** Load distribution (load transfer) curves for test pile C-1 due to compression loading based on strain gauge measurements during the axial compression loading

For pile C-2, the method just described for estimating the composite modulus for pile C-1 was not possible since the top strain gauge was not functioning properly after installation. Therefore, the composite modulus used for pile C-2 was estimated using material properties and strength characteristics, as described below. The composite modulus ( $E_{comp,C2}$ ) incorporates contributions from the grout and steel reinforcement, and was estimated using the following relationship:

$$E_{comp,C2} = \frac{E_{grout}A_{grout} + E_{steel}A_{steel}}{A_{grout} + A_{steel}} \tag{1}$$
 where:  $E_{grout}$  is the modulus of elasticity of a purely grouted section,  $A_{grout}$  is the cross-sectional area of

where:  $E_{grout}$  is the modulus of elasticity of a purely grouted section,  $A_{grout}$  is the cross-sectional area of grout for a given loaded diameter,  $E_{steel}$  is the modulus of elasticity of steel, and  $A_{steel}$  is the cross-sectional area of steel within the same diameter. As shown in Table 4, the compressive strength of the grout at 21 days was about 8,710 psi (60.1 MPa). The following relationship was used to determine the modulus of elasticity of a purely grouted section:

$$E_{grout} = 57000\sqrt{f_c'} = 5,319,661 \ psi = 5,320 \ ksi \ (36,678 \ MPa)$$
 (2)

For typical mild grade steel, the value of  $E_{steel}$  is 29,000 ksi (200,000 MPa). As described in a subsequent section, the average pile diameter in the upper 24 in (610 mm) of embedment was about 18.1 in (460 mm), resulting in a cross-sectional area of about 257.3 in<sup>2</sup> (1660 cm<sup>2</sup>). The area of steel within the cross-section was about 11.05 in<sup>2</sup> (71.3 cm<sup>2</sup>), resulting from 12- No. 8 longitudinal bars and 1- No. 11 center bar (Table 2). Therefore, the area of grout was about 246.25 in<sup>2</sup> (1589 cm<sup>2</sup>). The composite modulus,  $E_{comp,C2}$ , was computed to be 6,337 ksi (43,692 MPa), as shown in the equation below.

$$E_{comp,C2} = \frac{(5,320 \, ksi)(246.25 \, in^2) + (29,000 \, ksi)(11.05 \, in^2)}{(246.25 \, in^2) + (11.05 \, in^2)} = 6,337 \, ksi \, (43,692 \, MPa) \tag{3}$$

Based on the composite modulus, the axial load  $(Q_{ax,i})$  at each strain gauge location was determined by multiplying the measured / recorded strain  $(\varepsilon_{ax,i})$  by the composite section modulus  $(E_{comp,C2})$  and the estimated cross-sectional area  $(A_i)$  at the respective strain gauge location, as reflected in the following equation:  $Q_{ax,i} = \varepsilon_{ax,i} E_{comp,C1} A_i$ . The computed axial loads and unit side resistance at the strain gauge locations in pile C-1 are shown in Table 8. The load transfer behavior for pile C-2 is shown in Figure 24 (additional evaluation of the strain dependent modulus will be performed after submission of this final report). Measurements of axial strain from the embedded strain gauges were recorded at each load increment throughout the load tests, and are provided in Appendix I.

**Table 8.** Computed axial loads and unit side resistance at the strain gauge locations in pile C-2

|                                  | Strain Gauge No. |       |       |       |       |       |       |  |  |
|----------------------------------|------------------|-------|-------|-------|-------|-------|-------|--|--|
|                                  | 1                | 2     | 3     | 4     | 5     | 6     | 7     |  |  |
| Depth (ft)                       | 2                | 10    | 20    | 30    | 40    | 50    | 58    |  |  |
| Incremental Length (ft)          |                  | 8     | 10    | 10    | 10    | 10    | 8     |  |  |
| Load at Strain Gauge (ton)       |                  |       |       |       |       |       |       |  |  |
| Measured                         | 425              | 375   | 328   | 248   | 191   | 135   | 80    |  |  |
| Predicted                        | 0                | 36    | 72    | 132   | 194   | 261   | 315   |  |  |
| Shaft Resistance (ton)           |                  |       |       |       |       |       |       |  |  |
| Measured                         |                  | 50    | 46    | 80    | 58    | 56    | 55    |  |  |
| Predicted                        |                  | 36    | 36    | 60    | 63    | 67    | 54    |  |  |
| Unit Side Resistance (ton/sq ft) |                  |       |       |       |       |       |       |  |  |
| Measured                         |                  | 1.002 | 0.737 | 1.274 | 0.918 | 0.887 | 1.085 |  |  |
| Predicted                        | -                | 0.722 | 0.568 | 0.947 | 0.996 | 1.058 | 1.082 |  |  |



**Figure 24.** Load distribution (load transfer) curves for test pile C-2 due to compression loading based on strain gauge measurements during the axial compression loading

#### **TENSION LOAD TESTS**

The axial tension tests were performed in general accordance with ASTM D3689 / D3689M-07, Quick Load Method (ASTM, 2013b). As shown in Figure 25, the axial tension loads were applied manually using a hydraulic jack that pulled on an embedded center steel reinforcement bar in the installed piles (T-1 and T-2). During the loading phase, additional loads were applied in 10 ton (89 kN) increments for pile T-1 and in 15 ton (133 kN) increments for pile T-2 at approximately 5 minute intervals. For each load increment, the applied load was increased to or above the target load (for that increment), and was maintained (i.e., no additional loads were applied) during the interval between readings. The applied loads were measured using a gage on the jack as well as an electronic load cell located between the pile and the reaction frame.

Measurements of the pressure in the hydraulic jack, the load in the cell, and displacements from the dial gages were made and recorded at the beginning and ending of each loading interval. Induced displacements at the top of pile (i.e., pile head) were measured and recorded using four dial gages, which were located at approximately equal spacing around the top of the pile. Before continuing to the next load increment, the loaded pile was allowed to achieve equilibrium under the applied loading during an interval, such that the applied load was not decreasing due to deflections either at the pile-head or in the reaction frame. Each pile was loaded until continuous upward vertical movement of the pile-head was observed (i.e., pullout was initiated) at a constant applied load (i.e., geotechnical failure had been achieved).



Figure 25. Tension load testing setup for (a) pile T-1 and (b,c) pile T-2

The load-displacement responses of test piles T-1 and T-2 due to the applied axial tension loading are plotted in Figure 26, and all of the data measured using the hydraulic jack and the electronic load cell during the tension testing are presented in Appendix J. The estimated capacity of test piles T-1 and T-2 were computed as 205 ton (1824 kN) and 265 ton (2538 kN), respectively. As observed in Figure 26 for both tension tests, there was better agreement between loads determined using the hydraulic jack and the electronic load cell than was observed for the compression tests (Figure 21).

It should be noted that the center steel bars that were installed in the test piles (Figure 25) were not sleeved; therefore, it is likely that the piles cracked at some distance below the ground surface during the tension testing. As observed in Figure 26, the measured pile-head deflections are likely a result of a short section of pile displacing or moving along with the elongation of the center bar as the tensile load was applied. Based on observations of the deflection of the center bars during the tension testing, it is estimated that at about 1 in (25 mm) of the observed pile-head deflections are due to the elongation of the center bar and not due to the upward movement of the pile. As such, this behavior should be considered when evaluating the behavior of these types of piles.



Figure 26. Load-displacement behavior of test piles (a) T-1 and (b) T-2 due to tension loading

#### LATERAL LOAD TESTS

The lateral tests were performed in general accordance with ASTM D3966 / D3966M-07 (ASTM, 2013c), as shown in Figure 27. However, the applied loads that were in excess of 50% of the estimated free-head capacity were adjusted (and a special loading sequence was developed) to ensure the piles L-1 and L-2 were loaded until the deflection at the top of the pile was at least 1 in (25 mm). The lateral loads were applied manually using a hydraulic jack (Figure 27) and a collar connection (to ensure the hydraulic jack didn't slip). The applied loads were measured using a gage on the hydraulic jack as well as an electronic load cell located between the pile and the reaction frame. During the loading phase, additional loads were applied in increments of about 2 tons (18 kN) for pile L-1 and about 4 tons (36 kN) for pile L-2 in general accordance with ASTM D3966; however, the adjusted loading sequence used 20 min hold times (load duration) for the latter portion of the testing.



Figure 27. Lateral load testing setup for (a, b, c) pile C-1 and (d,e) pile C-2

Measurements of the pressure in the hydraulic jack, the load in the cell, and displacements from the dial gages were made and recorded at the beginning and ending of each loading interval. Induced displacements at the top of pile were measured and recorded using two dial gages, which were located at the same elevation of the load / hydraulic jack and above the location of load application. Before continuing to the next load increment, the loaded pile was allowed to achieve equilibrium under the applied loading during an interval, such that the applied load was not decreasing due to deflections either at the pile-head or in the reaction frame. For each load increment, the applied load was increased to or above the target load (for that increment), and was maintained (i.e., no additional loads were applied) during the interval between readings.

The load-displacement responses of test piles L-1 and L-2 due to the applied lateral loading are plotted in Figure 28, and all of the data measured using the hydraulic jack and the electronic load cell during the

tension testing are presented in Appendix K. The estimated capacity of test piles T-1 and T-2 were computed as 16 ton (142 kN) and 30 ton (267 kN), respectively. However, piles L-1 and L-2 were loaded until a lateral displacement of about 1 in (25 mm) was achieved at the elevation of the load application, and not until geotechnical or structural capacity was reached; therefore, comparisons between estimated and measured capacity could not be made.



Figure 28. Load-displacement behavior of test piles (a) L-1 and (b) L-2 due to lateral loading

#### PILE EXTRACTION AND MEASUREMENTS

Per the intent of the experimental and demonstration program, pile E-1 with a nominal diameter of 18 in (457 mm) was extracted on 08 December for visual inspection and measurement of the as-constructed condition of the pile. To assist in the extraction, a number of relief holes about 14 in (356 mm) in diameter were drilled (Figure 29a) around but in close proximity to the constructed pile. Initially, a hydraulic jack and tension test reaction arrangement (similar to that used for the axial tension test loading of piles T-1 and T-2) were begin the extraction process of pile E-1 (Figures 29b and 29c).



**Figure 29.** Preparation and setup for extraction of pile E-1: (a) drilling 14 in (356 mm) diameter relief holes around pile E-1, (b, c) reaction system setup for initial extraction

Once pile E-1 was extracted a distance out of the ground (about 2 to 3 ft (0.6 to 0.9 m)), a crawler-crane was employed to extract the pile the remainder of the length from the ground (Figure 30a and 30b). The pile was then pressure washed as it was extracted to remove any dirt or debris from its surface. After being placed horizontally on supports, the pile was visually inspected and its circumference was measured (Figure 30c) in increments of 12 in (305 mm), 40 increments, along the length of the pile to verify the asbuilt condition, to compare with measurements performed during installation, and to compare with measurements performed using the TIP method (Mullins and Johnson, 2017). The as-built measurements of the circumference of the extracted pile E-1 are provided in Appendix L. Mullins and Johnson (2017) indicated that the researchers used the measurements of the circumference (diameter) and corrected grout volumes as part of their analysis and data processing. The contractor used the overall grout factor, which was reduced for each pile based on the actual grout strokes (i.e., after head was observed at surface). That computed volume determined based on measurements of the extracted pile was in very close agreement with the computed volume based on values recorded using the AME and grout strokes.

Based on the measurements of the pile's circumference, the as-built diameter ranged from about 18.1 to 20.7 in (461 to 526 mm), with an average of about 19.4 in (494 mm). The theoretical or nominal diameter of pile E-1 was 18 in (457 mm). Therefore, the diameter of the as-built pile was greater than the nominal diameter (Table 9), thereby indicating there were no instances of necking or embedded inclusions in the pile. However, given that the as-constructed diameter was in excess of the nominal diameter as much as 2 in (50 mm) indicates that there may have been a looser than expected soil layer(s) or slight overmilling during construction. The increased diameter resulted in only more grout being used (i.e., additional cost to the contractor) but no compromise to the integrity or performance of the pile.







**Figure 30.** (a,b) Extraction of pile E-1 using a crane attachment, and (c) extracted pile and manual measurements of the pile circumference

**Table 9.** Measurement statistics about as-built construction of extracted pile E-1

|             | Calculate | <u>d Diameter</u> | <u>Diff. from Theoretical Diameter</u> |      |       |  |  |  |  |
|-------------|-----------|-------------------|----------------------------------------|------|-------|--|--|--|--|
|             | (in)      | (mm)              | (in)                                   | (mm) | (%)   |  |  |  |  |
| Average     | 19.4      | 494               | 1.4                                    | 36.6 | 8.0%  |  |  |  |  |
| Maximum     | 20.7      | 526               | 2.7                                    | 69   | 14.9% |  |  |  |  |
| Minimum     | 18.1      | 461               | 0.1                                    | 4    | 0.8%  |  |  |  |  |
| Stand. Dev. | 0.7       | 17                | 0.7                                    | 16.8 | 3.7%  |  |  |  |  |

Analysis and interpretation of the measurements made using the TIP method were performed by the researchers at the University of South Florida. A profile of the thermal measurements made from four embedded TIP wires in pile E-1 is provided in Figure 31a, which indicates that the pile was relatively uniform in diameter throughout its length, which corresponds well with the as-constructed measurements of the pile's circumference. A comparison of the effective radius (estimated and measured) along the length of pile E-1 is provided in Figure 31b, which shows good agreement among the measurements made using the TIP method, caliper, and as-built measurements along with the grout volume recorded during casting, when corrected for the volume of grout observed to be flowing out of the top of the pile during construction (i.e., "TIP Eff. Radius from Actual Volume" on Figure 31). As observed in Figure 31, when corrected for the volume of grout observed coming out of the ground (black line), the predicted volume based on the measurements from the flow meter or grout strokes was in good agreement with the volume determined from the manual measurements. Additional details, discussion, and interpretation can be found in Mullins and Johnson (2017).



Figure 31. (a) Measurements made from TIP wires and (b) estimated and measured radius of pile E-1

#### ADDITIONAL TESTS

RIM-cell tests (i.e., bi-directional smaller-scale proof load tests), which subject a load at the location of embedment similar to other bi-directional load test methods, were performed on reaction piles R1 and R5 on 09 December. R1 and R5 were approximately 18 in (457 mm) and 24 in (610 in) in diameter, and were constructed in a similar manner to the test piles. These tests were performed only for "proof of concept" for the Florida DOT, and were not incorporated into the previously discussed demonstration and experimental testing program. It should be noted that the RIM cell sizes (i.e., 12 in (305 mm) and 18 in

(457 mm) diameter, respectively) were selected with consideration to the installation success, rather than the anticipated design load of the piles. Additional investigation to appropriately size the RIM cell for a given production load vs. the size of RIM cell that could practically be installed within a given ACIP pile plan area should be considered. Reaction pile R1 was subjected to maximum load of about 43 tons (378 kN), which induced minimal / negligible movement of about 0.002 in (0.05 mm) of the pile in each direction. Reaction pile R5 was subjected to a maximum load of about 54 tons (476 kN), which induced a movement of about 0.31 in (8 mm) of the pile in the downward direction (Figure 32).



Figure 32. Load-displacement behavior for R-5 obtained using the RIM-cell

#### RECOMMENDATIONS

Additional research (data collection and dissemination) of single and multiple thermal measurements along with the comparison to measurements of the as-built circumference of (extracted) ACIP piles will enhance the usefulness of thermal profiling for verification of ACIP pile integrity. The use of bidirectional load cells for the verification of axial resistance of production ACIP piles appears to be potentially viable. However, additional evaluation and guidance is required to appropriately size a bidirectional device for a given production load considering the practicality of installing that device (diameter and depth considerations) into a freshly grouted / concreted ACIP pile.

#### **CONCLUSIONS**

The procedures described herein along with the results of the non-destructive and high strain load tests, measurements and observations made via the QC/QA program, and measurements performed on the extracted pile validate ACIP piles for consideration for the structural support of bridges per the Florida DOT. The results of this demonstration program provide physical substation to the Florida DOT, as it develops a section for ACIP Piles for Bridges and Major Structures in its Standard Specifications. Grout volumes, as measured by an electromagnetic flowmeter and via manual counting of grout strokes, showed good agreement on this particular project; however, it is noted that other systems for measuring grout flow (e.g., automated grout pump stroke measurements) are being developed, which may be better suited for the monitoring of ACIP piles. On this demonstration project, the overall grout volume of the extracted

pile, when adjusted for the volume of grout observed flowing out of the top of the pile, was in good agreement with both the volume calculated by manually measuring the circumference of the pile at 1 ft (305 mm) intervals and the predicted volume determined using thermal measurements.

#### **REFERENCES**

- ASTM C109 / C109M-16a. (2016). "Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)," ASTM International, West Conshohocken, PA. www.astm.org.
- ASTM D1143 / D1143M-07. (2013a). "Standard Test Methods for Deep Foundations Under Static Axial Compressive Load," ASTM International, West Conshohocken, PA. <a href="https://www.astm.org">www.astm.org</a>.
- ASTM D3689 / D3689M-07. (2013b). "Standard Test Methods for Deep Foundations Under Static Axial Tensile Load," ASTM International, West Conshohocken, PA. www.astm.org.
- ASTM D3966 / D3966M-07. (2013c). "Standard Test Methods for Deep Foundations Under Lateral Load," ASTM International, West Conshohocken, PA. www.astm.org.
- ASTM D7949-14. (2014). "Standard Test Methods for Thermal Integrity Profiling of Concrete Deep Foundations," ASTM International, West Conshohocken, PA. www.astm.org.
- Butler, H.D., and H.E. Hoy (1977) "The Texas Quick-Load Method for Foundation Load Testing," User's Manual. Report No. FHWA-IP-77-8.
- Mullins, G. and Johnson, K. (2016). "Optimizing the Use of the Thermal Integrity System for Evaluating Augercast Piles, Final Report," prepared for Florida Dep't of Transportation. Report No. BDV25-977-09.
- Mullins, G. and Johnson, K. (2017). "Thermal Integrity System for Augered Cast-In-Place Piles, Part II, Implementation Plan," prepared for Florida Dep't of Transportation. Report No. BDV25-977-34.
- NeSmith, W.M. (2015). "Recent developments in ACIP and DD piling". Proceedings of the Annual Conference of the Minnesota Geotechnical Society. February.
- Stuedlein, A.W., Reddy, S.C., and Evans, T.M. (2014). "Interpretation of Augered Cast-in-Place Pile Capacity Using Static Loading Tests". The Journal of the Deep Foundations Institute. Vol 8, No. 1, pp. 39–47.

# **APPENDIX A**

SITE CHARACTERIZATION - CONE PENETRATION TESTS (CPT) SOUNDINGS, SOIL BORING LOGS, AND STANDARD PENETRATION TEST (SPT) N-VALUES



Figure A-1. CPT log R-6



Figure A-2. CPT correlative parameter log R-6



Figure A-3. CPT log R-8



Figure A-4. CPT correlative parameter log R-8

| CICI | 00  | ORING | 100 |  |
|------|-----|-------|-----|--|
| FIFI | D B | ORING | LUG |  |

| PROJE  | CT NO.     | NA       | NAME Ange                | cast      | Pile a           | esearc's    | OUNTY   | Lake       |               | DISTRICT _    | 5     |
|--------|------------|----------|--------------------------|-----------|------------------|-------------|---------|------------|---------------|---------------|-------|
| LOCATI | ON 01      | ka humpk | a FL                     | TOWNSHI   | P                | R           | ANGE .  |            |               | SECTION       |       |
|        | NUMBER     |          |                          |           |                  |             |         | CE ELEVA   |               |               |       |
| EQUIPN | MENT TYP   | E CME    | 75                       | RIC       | S NO.            | 4600        | 5       | BOF        | RING          | NO. #1 (      | (41)  |
| DATE S | TARTED     | 9/12/    | ZOILO COMP               | LETED _   | 1/12/12          | 016         | DRILL   | ED BY      | Bru           | ce/kyle       |       |
| LOGGE  | DRY 7      | allam /  | toold BORING             | TYPE      | Al               | IGER WAS    | SHED DE | PCHESION   | POST          | ARY           |       |
| WATER  | TARI E     | O HR     | 24 HRS                   | APSE)     | C                | ASED, UNC   | ASED, Q | RILLING MU | <u> </u>      |               |       |
|        |            |          |                          |           | _                |             |         |            |               |               |       |
| SAMPL  | E CONDIT   | IONS:    | DISTURBED SAME           | LE TYPES: | A: A             | UGER        | TES     | rs: w.c.:  | WAT           | TER CONTENT ( | %)    |
|        |            |          | GOOD                     |           |                  |             |         |            |               | VANE (TSF)    |       |
|        |            |          | LOST                     | ,         |                  | HELBY T     |         | V:         | IN-S          | ITU VANE TEST | (TSF) |
|        |            | - 7      | CORE SAMPLE              |           |                  |             |         | CIZE       |               |               |       |
| L      |            |          | L CORE SAMPLE            |           | RG: R            | OCK CO      | KE      | _ 312.5    |               |               |       |
| ELEV.  | DEPTH      | S.P.T.   |                          |           |                  | SAMPLES     |         |            |               |               |       |
| (FT.)  | (FT.)      | BLOWS    | MATERIAL DESCRI          | PTION     | CON.             | NO.<br>TYPE | REC.    | TEST       | s             | REMARK        | S     |
| -      | -          | l l      | Dark Brown to            | Black     | 111              | ITPE        | (%)     |            | -             |               |       |
|        | 1 —        | 2        | Sand                     | 15 1000   |                  |             | 50      | SB         | $\equiv$      | _             |       |
|        |            | 3        | Dark Brown to L          | ioh+      | 11,              |             |         |            | ~-            |               |       |
|        | z <b>–</b> | 1        | Brown sand               |           | 1/14             | _2          | 50      | SB         | =             | _             |       |
|        | 3_         | 3        | Call Dia C               | - 1       | 11,              | _           |         |            | _             |               |       |
|        | 4 -        | 2        | Light Brown S            | and       | //#              | _3          | 50      | SB         | =             |               |       |
|        |            | 2        | Light Brown to           | 11/6:40   | 113              | -           |         |            | -             |               |       |
|        | 5          | - 0      | Sand                     | WIII IE   | 7/1              | 4           | 50      | SB -       | =             |               |       |
|        | 6          | - 6-     | Light Brown To           | while     | 77               | _           |         |            | -             | _             |       |
|        | 7_         | 3        | Sand W/ Trace            | of CYDHAP | 1/11             | _5          | 60      | SB         | $\equiv$      |               |       |
|        | 0          | 3        |                          | Je        | 11/              |             | 00      |            | -             |               |       |
|        | 8-         | 3,       | Same                     |           | 1/14             | 6           | 60      | SB         | $\exists$     |               |       |
|        | 9-         | 4        |                          |           | 11.              | _           |         |            | -             |               |       |
|        | 10         | 3        | Same                     |           | $//\overline{D}$ | 7           | 70      | SB -       | =             |               |       |
|        | , )        | 4        |                          |           | TIM              |             |         |            | $\neg$        |               |       |
|        | 1.1        |          |                          |           |                  | _           | - 2     | 0.4        | $\exists$     |               |       |
|        | 12-        |          |                          |           | -                | _           |         |            | $\dashv$      | _             | 100   |
|        | 13 -       | ,        |                          |           |                  | _           |         | -          | $\exists$     |               |       |
|        | 111        |          |                          |           | $\vdash$         |             |         |            | $\dashv$      |               |       |
|        | 1-1-       |          |                          | 177       |                  | _           |         | 8 .        | $\Box$        |               |       |
|        | 13         | 2        | - v 0-0-10               | t-0       | 7/1.             | -           |         | -          | $\overline{}$ |               |       |
|        | 10         | 3        | Park Brown<br>Black Samo | ,,,       |                  | 2           | 50      | SB         | $\Box$        |               |       |
|        | 19         | 7        | Black Sumo               |           | 114              | U           |         | (n) money  | $\dashv$      |               |       |
|        | 10         |          |                          |           |                  |             |         |            | $\Box$        | _             |       |
|        | 18 —       | -        |                          |           | -                | _           |         |            | -             | _             |       |
|        | 19         |          |                          |           |                  | 3           |         |            | $\exists$     |               |       |
| 1      | 26         |          |                          |           | _                |             |         |            | _             | _             |       |
|        | L)         |          |                          | r         |                  |             |         | -          |               |               | ٠     |

**Figure A-5.** Soil boring log B-1 (L-1)

| FIELD BORING | LOG |
|--------------|-----|

|        |          |        |                       |                           |                                    |           |              | SHEET       | OF         | _  |  |  |
|--------|----------|--------|-----------------------|---------------------------|------------------------------------|-----------|--------------|-------------|------------|----|--|--|
| PROJE  | CT NO.   |        | NAME                  |                           |                                    | COUNTY    |              | DISTRI      | ст         |    |  |  |
| LOCAT  | ION      |        | TOWN                  | SHIP _                    | F                                  | RANGE     |              | SECTIO      | N          |    |  |  |
| ROAD   | NUMBER   |        | ( ) 1                 |                           | -                                  | SURFA     | CE ELEVATION | ON          |            |    |  |  |
| EQUIP  | MENT TYP | E      | ame                   | RIG NO.                   |                                    |           | BORIN        | G NO. #     | (41)       | \  |  |  |
| DATE S | STARTED  |        | COMPLETED             | DRILLED BY                |                                    |           |              |             |            |    |  |  |
| LOGGE  | D BY     |        | BORING TYPE:          |                           | AUGER, WASHED, PERCUSSION, ROTARY, |           |              |             |            |    |  |  |
| MATER  | TABLE    | 0 HR   | 24 HRS HRS            |                           | CASED, UN                          | CASED, D  | RILLING MUD, |             |            |    |  |  |
| l      |          |        |                       |                           |                                    |           |              |             |            |    |  |  |
| SAMPL  | E CONDIT | IONS:  | DISTURBED SAMPLE TYPE | ES: A:                    | AUGER                              | TES       | TS: W.C.: W  | ATER CONT   | TENT (%)   |    |  |  |
|        |          |        | GOOD                  |                           | SPLIT BA                           |           | T: To        | ORVANE (TS  | SF)        |    |  |  |
|        |          |        | LOST                  |                           | SHELBY                             |           | V: IN        | I-SITU VANE | TEST (TSF  | F) |  |  |
|        |          |        |                       |                           |                                    |           | CIZE         |             |            |    |  |  |
|        |          |        | CORE SAMPLE           | RC:                       | ROCK CO                            | KE        | _ SIZE       |             |            |    |  |  |
| ELEV.  | DEPTH    | S.P.T. | *                     |                           | SAMPLES                            | S         |              |             |            |    |  |  |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL DESCRIPTION  | CON                       | NO.<br>TYPE                        | REC.      | TESTS        | RE          | MARKS      |    |  |  |
|        | 23       | 7      | Light Brown Sand      | 1 // /                    | TYPE                               | (%)       |              | +           |            |    |  |  |
|        | 21-      | 7      | LIGHT DROWN SAND      | 1///                      | 9                                  | 60        | SB =         | ┨           |            |    |  |  |
|        | -10      | 8      |                       | 1/1                       | T-1                                | 00        | 30 -         |             |            |    |  |  |
|        | 25       |        |                       | -                         | +                                  |           |              | +           |            |    |  |  |
|        | 23       | Ţ      |                       | =                         | 1_                                 |           | =            | 1           |            |    |  |  |
|        |          | ,      |                       | -                         | ┨                                  | -         | -            | ┥           |            |    |  |  |
|        | 24       |        |                       | 1 =                       |                                    | l         | _            |             |            |    |  |  |
|        | 25       | 131    | Stiff Light Brown     | 717                       | -                                  |           |              | _           |            |    |  |  |
|        | 26-      | 14     | clay w/sand           | 1/1/1/1/                  | 110                                | 100       | SB =         | 1           |            |    |  |  |
|        |          | 1.5    | 001 01 31101          | 11 11                     | - 10                               | -         | 30           | ***         |            |    |  |  |
|        | 27       |        |                       | =                         |                                    |           | =            | _           |            |    |  |  |
|        | 28-      |        | 89                    | -                         | +                                  |           | _            | +           |            |    |  |  |
|        | 29-      |        |                       | =                         | 1                                  |           | =            | <b>_</b>    |            |    |  |  |
|        | 30       |        |                       | -                         | -                                  |           | -            | $\dashv$    |            |    |  |  |
|        | -50      | 7      | Stiff Grey Sandy Cla  | J 1/1                     |                                    | Ma        | C/2 -        |             |            |    |  |  |
|        | 31-      | Ŕ      | Dine A Joseph Co      | THA                       | <del>1  </del>                     | 100       | SB =         | +           |            |    |  |  |
|        | 32-      |        |                       | The state of the state of |                                    | -         |              | #0.00 (Mar) |            | _  |  |  |
|        |          |        |                       | -                         | ┨                                  |           | -            | -           |            |    |  |  |
|        | 33       |        |                       | =                         |                                    |           | =            |             |            |    |  |  |
|        | 34-      |        |                       | -                         | +                                  | l         | ·            | +           |            |    |  |  |
|        | 30       |        |                       |                           | 1                                  |           |              |             |            |    |  |  |
|        |          | 8      | Tan Siphtly Sility    | V/ <del>/</del>           | 111                                | an        | SB =         | -           |            | -  |  |  |
|        | 36-      | - 6    | Sand                  | 1/1/                      | 114                                | 90        | 3/5 -        | _           |            |    |  |  |
|        | 37-      |        |                       | -                         | +-                                 |           | _            | +           |            |    |  |  |
|        | 38 -     |        |                       |                           | 1_                                 |           |              | 1           |            |    |  |  |
|        |          |        |                       | -                         | -                                  | - · · · · | _            | -           |            |    |  |  |
|        | 39-      |        | ) .                   |                           | _                                  |           | =            | <b></b>     |            |    |  |  |
|        | 4        | ~      |                       | 11/                       | -                                  |           |              | -           |            |    |  |  |
| ,      | 41       | 8      | Same                  | 11/1                      | 117                                | 6         | 52           | +           |            |    |  |  |
| ,      | 41.5     | ğ      |                       | 1///                      | 119                                | 0         | 20           | RECY        | CLED PAPER | •  |  |  |
| -      | 1        |        | FOB 41,5'             | 111/                      |                                    |           |              | -           |            | -  |  |  |
|        |          |        | 100                   |                           |                                    |           |              |             |            |    |  |  |

Figure A-5. Soil boring log B-1 (L-1) continued

|                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIELD BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KINGL  | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |            |       |           | ,                   | 08/9  |
|----------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|-------|-----------|---------------------|-------|
|                |                | 11/1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F.:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41       | -          | SI    | HEET      | OF                  | 4     |
| PROJE          | CT NO.         | NIA             | NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Auger Cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pile   | Reseate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YTNUC    | LALL       |       | DIST      | TRICT 2             | 7     |
| LOCATI         | ON OR          | canump)         | La FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOWNSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IP     | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANGE _   |            |       | SEC       | TION                |       |
|                | NUMBER         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | CE ELEVA   |       |           |                     | . \   |
| EQUIPM         | MENT TYP       | E CME           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G NO.  | 2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5        | BOF        | RING  | 10. 7     | 12 (C-              | /)    |
| DATE S         | TARTED         | 9/12/           | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMPLETED _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/13   | 12016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ DRILL  | ED BY      | Bru   | ce /      | Kyle                |       |
| LOGGE          | D BY D         | palton/         | Tode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BORING TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AU     | IGER, WAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SHED, PE | RCUSSION   | RQIA  | ARY,      |                     |       |
| WATER          | TABLE:         | 0 HR.           | 24 HRS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HRS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA     | SED, UNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASED, U  | KILLING MC | , _   | -         |                     |       |
|                | E CONDIT       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |       |           |                     |       |
| SAMPL          | E CONDIT       | long.           | DISTURBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D SAMPLE TYPES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A: A   | UGER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100      | W.C.:      | WAT   | TER CO    | ONTENT (9           | 6)    |
|                |                |                 | GOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB S   | PLIT BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REL      | T:         | IN-S  | ITILVA    | (TSF)<br>NE TEST    | TSF   |
| 4              |                |                 | LOST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S: S   | HELBYT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UBE      | •          | 114-0 | 110 17    | THE TEOT            | , , , |
|                |                | П               | CORE SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RC: R  | OCKCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RE       | SIZE       |       |           |                     |       |
|                |                |                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | SAMPLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6        |            |       |           |                     |       |
| ELEV.<br>(FT.) | DEPTH<br>(FT.) | S.P.T.<br>BLOWS | MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CON    | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REC.     | TEST       | s     |           | REMARK              | S     |
| (1.1.)         | (ō'            | beome           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CON.   | NO.<br>TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (%)      |            |       |           |                     |       |
|                |                | 7,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | _/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | 2          |       | L         |                     |       |
|                |                | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No. of the last of | 111    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |            | _     |           |                     |       |
|                | 2-             | -               | Black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rown to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/4    | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76       | SB         | =     |           |                     |       |
|                | 3 -            | 7               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 00         | -     | _         |                     |       |
|                | 4 -            | 2               | Light Br<br>Brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/4    | _2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40       | 513        |       | _         |                     |       |
|                | -/             | 2               | Light to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111   | No. of Contract of |          |            |       | 475 (100) |                     |       |
|                | 5              | 2               | 21911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in sang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1111   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60       | SB:        | =     |           |                     |       |
| *              | 6-             | 4               | link + fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Cad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            | _     | -         | Charles and Charles |       |
|                | 7_             | 5               | L/ghi Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Sand<br>of olange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/41   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70       | SB         | =     | <u> </u>  |                     |       |
|                | 0              | 4               | Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or orange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 191    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |            |       |           |                     |       |
|                | 8 —            | 4               | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/1/2 | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       | SB         | =     |           |                     |       |
|                | 9-             | 5               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/1:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10       | 00         |       | _         |                     |       |
|                | 10             | 3               | Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1111   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70       | 55 -       |       | -         |                     |       |
|                | 11             | 3               | 7 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114    | Sq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110      | 00         | =     | -         |                     |       |
|                | 10             | 3               | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/1    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00       | SB         | _     | 10        |                     |       |
| _              | 12-            | 3               | The second secon | an Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/11  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10       | 200        |       | _         |                     |       |
|                | 13-            | 3               | Light 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11/11  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60       | SB         | _     | $\vdash$  |                     |       |
|                | 14             | T               | Dark Bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wh to grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70       | on         |       | - ,       | buter               |       |
|                | 15             | 7               | Say                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wn to gray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/14  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10       | SB         | _     |           | Voler<br>Tabl.      | e 15  |
|                | 1.             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | - 3        | 100   | The same  |                     | 300   |
|                | 10-            |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A K    | Gan a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |            | 1     | 700       |                     | 1     |
|                | 17-            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      | W. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 1          | 1     |           | 1                   |       |
|                | 10             | 5               | tan S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        | 05         |       |           | 1966                |       |
|                | 10             | 5               | 1011 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/1    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       | SP         | 3 —   |           | 1                   |       |
|                | 19-            | 6               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IV     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -        | 100        | 7     |           | 1000                | -     |
|                | 20             |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D. W   | No. 17 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | de       |            |       | W         | - 19                |       |

**Figure A-6.** Soil boring log B-2 (C-1)

|        |          |                 |                                  |                                                                                |                 |           |                   | - 01               | G Or               |  |  |
|--------|----------|-----------------|----------------------------------|--------------------------------------------------------------------------------|-----------------|-----------|-------------------|--------------------|--------------------|--|--|
| PROJE  | CT NO.   |                 | NAME                             |                                                                                | COUNTY DISTRICT |           |                   |                    |                    |  |  |
| LOCATI | ON       |                 | TOWNSI                           |                                                                                |                 |           |                   |                    |                    |  |  |
| ROAD N | NUMBER   |                 |                                  |                                                                                |                 | SURFAC    | CE ELEVA          | TION               | 110 60 1           |  |  |
| EQUIPN | MENT TYP | E               | R                                | RIG NO.                                                                        |                 |           | BOR               | ING N              | 10. #2(C-1)        |  |  |
| DATE S | TARTED   |                 | COMPLETED                        |                                                                                |                 | _ DRILL   | ED BY             |                    |                    |  |  |
| LOGGE  | D BY     |                 | BORING TYPE:                     | BORING TYPE: AUGER, WASHED, PERCUSSION, ROTARY,  CASED, UNCASED, DRILLING MUD, |                 |           |                   |                    |                    |  |  |
| WATER  | TABLE:   | 0 HR            | 24 HRS HRS                       |                                                                                | CASED, UNC      | CASED, DF | RILLING MU        | D, _               |                    |  |  |
| SAMPL  | E CONDIT | IONS:           | DISTURBED SAMPLE TYPES           | S: A:                                                                          | AUGER           | TEST      | S: W.C.:          | WAT                | ER CONTENT (%)     |  |  |
|        |          | 7               |                                  |                                                                                |                 |           |                   |                    | VANE (TSF)         |  |  |
| ***    |          |                 | LOST                             | S:                                                                             |                 | V:        | IN-SI             | TU VANE TEST (TSF) |                    |  |  |
|        |          |                 |                                  |                                                                                | ROCKCO          |           | SIZE              |                    |                    |  |  |
|        |          |                 | CORE SAMPLE                      | RC:                                                                            | ROCKCO          | KE        | _ 512.            |                    |                    |  |  |
| ELEV.  | DEPTH    | S.P.T.<br>BLOWS | MATERIAL DESCRIPTION             | 2336                                                                           | NO.             | REC.      | TEST              | s                  | REMARKS            |  |  |
| (FT.)  | (FT.)    | BLOWS           |                                  | CON.                                                                           | NO.<br>TYPE     | (%)       |                   |                    |                    |  |  |
|        | 20       | 5               | · 5'21d-                         |                                                                                | 1/              | 0         |                   | $\dashv$           | Sample fell out of |  |  |
|        | 21-      | 6               | traces of sitt (?)               | 100                                                                            | 1111            |           |                   | $\exists$          | Spoon              |  |  |
|        | 22       |                 |                                  |                                                                                | 100.00          |           |                   |                    | _ '                |  |  |
|        | 23       | 4               | SAME                             | 10 100                                                                         | 1               | 0         |                   |                    | SAME .             |  |  |
|        |          | 6               | 1                                | 100 mg                                                                         | 6-              |           |                   | $\exists$          | STIPRES            |  |  |
|        | 24       |                 |                                  | 1                                                                              |                 |           |                   | -                  |                    |  |  |
|        | 25       | 9               | Tan Silty Sand                   | 114                                                                            |                 | 73        | 00                | $\exists$          | CARLOS CONTRACTOR  |  |  |
|        | 26-      | 8               | Tan Silty Sand<br>Witroce orange | 1/1                                                                            | +11             | 80        | SB                | $\dashv$           | _                  |  |  |
|        | 27       |                 |                                  |                                                                                |                 | -         | A A Street street |                    |                    |  |  |
|        |          | 3               | Tan Silty Sand                   | 777                                                                            |                 | 00        | en                |                    | <u></u>            |  |  |
|        | 28-      | 6               | Mill Sind                        | 1/74                                                                           | 112             | 80        | SB                | =                  | <u> </u>           |  |  |
|        | 29       |                 |                                  | haler E                                                                        |                 | 1         |                   |                    |                    |  |  |
|        | 30       | 7               |                                  | 111                                                                            | 1000            |           | -                 |                    | 7                  |  |  |
|        | 21_      | 7               | Same                             | 1/4                                                                            | 13              | 80        | SB                | 1/1                | The same of        |  |  |
|        | 21       | 8               | 301730                           | 1-/-11                                                                         | -               | 0         |                   | -                  |                    |  |  |
|        | 32-      | 61              |                                  | 17                                                                             |                 | 2         |                   | - 1                |                    |  |  |
|        | 33       | 8               | Same                             | 1/1                                                                            | 111-            | 70        | SB                |                    |                    |  |  |
|        | 9!       | 8               | MIL                              | 1/2                                                                            | 119             | · ·       | ردر ا             | $\overline{}$      | <u> </u>           |  |  |
|        | 56       |                 |                                  | 100                                                                            |                 |           |                   |                    |                    |  |  |
|        | 27       | 7               | Tan Slightly Silty               | 1/1                                                                            | 16              | 70        | SB                | $\dashv$           |                    |  |  |
|        | 30       | 7               | Sand                             | 111                                                                            | 15              | 10        | 017               | 32                 | C-7                |  |  |
|        | 37-      | 1               | 1 1 1 1 W                        | -                                                                              | 100             |           | 0                 | 1                  | the second         |  |  |
|        | 20-      | 7               |                                  | 1/-                                                                            | N/A             | 70        | 50                |                    | _                  |  |  |
|        | 20       | 7               | Same                             | 1/1                                                                            | - 1/0           | 10        | 00                | -                  | -                  |  |  |
|        | 21       |                 |                                  | 1/2                                                                            |                 |           |                   |                    | - from             |  |  |
| 1      | 111      |                 |                                  | 1/                                                                             | -               | 175       | l -               | _                  |                    |  |  |

Figure A-6. Soil boring log B-2 (C-1) continued

| PROJE  | CTNO     |        | NAME                                                                           | -       | C                                       | OUNTY    |             | DISTRICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|--------|----------|--------|--------------------------------------------------------------------------------|---------|-----------------------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| LOCATI | ON       |        | TOWNSH                                                                         | HP _    | R                                       | ANGE     |             | SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| ROAD N | NUMBER   |        |                                                                                |         | 4                                       | SURFA    | CE ELEVAT   | ION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| EQUIPN | MENT TYP | E      | R                                                                              | IG NO.  |                                         |          | BORII       | NG NO. # 2 (C+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| DATE S | TARTED   |        | COMPLETED _                                                                    |         |                                         | _ DRILL  | ED BY       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| LOGGE  | D BY     |        | BORING TYPE: AUGER, WASHED, PERCUSSION, ROTARY,  CASED, UNCASED, DRILLING MUD, |         |                                         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| WATER  | TABLE:   | 0 HR   | 24 HRS HRS                                                                     |         | CASED, UNC                              | ASED, DI | RILLING MUD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SAMPL  | E CONDIT | IONS:  | DISTURBED SAMPLE TYPES                                                         | 8: A: . | A: AUGER TESTS: W.C.: WATER CONTENT (%) |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        |          |        | GOOD                                                                           | SB:     | SPLIT BAR                               | RREL     | T: V        | TORVANE (TSF)<br>IN-SITU VANE TEST (TSF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|        |          |        | LOST                                                                           | S:      | SHELBYT                                 | UBE      | ٧.          | IN-OLIO VAIVE LEGI (191)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|        |          |        | CORE SAMPLE                                                                    | RC:     | ROCK CO                                 | RE       | SIZE        | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| ELEV.  | DEPTH    | S.P.T. | MATERIAL DESCRIPTION                                                           |         | SAMPLES<br>NO.                          | REC.     | TESTS       | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL DEGORAL TION                                                          | CON.    | TYPE                                    | (%)      | 72070       | The state of the s |  |  |  |  |
|        | 4/_      | 5      | Tan slightly silty<br>Sand                                                     | 1///    | 17                                      | 70       | SB.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        |          | 7      |                                                                                | 1111    | -                                       |          |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|        | 42-      |        |                                                                                | - /-    |                                         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 43-      | 5      | Same                                                                           | VIta    | 178                                     | 70       | SB          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|        | 44       | V      | 241.6                                                                          | 1/7     | 10                                      | 10       | 313         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 45       |        | ,                                                                              |         |                                         |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 10     | 117      | 6      | Slightly Sity tan                                                              | 11/10   | 19                                      | 80       | SB          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|        | 46-      | 5      | Sand                                                                           | 1/19    | 1                                       | UV       | 02          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 47—      |        |                                                                                | 1.      | <del>_</del>                            |          |             | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|        | 49-      | 5      | Tan Slightly Sity                                                              | 1/1/    | -                                       | -1A      | ca .        | + 105+ First                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 3      | 49_      | 5      | Sand                                                                           | 6/17    | 20                                      | 10       | 58          | - 20% Of Samy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| )      | 50       |        | 1 1/2 1                                                                        | -       |                                         |          | 3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 30       | 3      | Canal                                                                          | 1/-     | -                                       | 70       | 00          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|        | 51-      | 3      | JULY                                                                           | 1/1/    | 7-21                                    | 10       | 013         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 52-      | -      | 42                                                                             |         | +                                       | ,        | 0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        |          | 5      | Tan Sand with Slight                                                           | 7/1     |                                         | 1 4      | 0.0         | + lost Firm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|        | 53-      | 7      | Trace of Sitt                                                                  | 1//4    | 1 22                                    | 60       | SB          | From TIPO+ SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|        | 54-      |        |                                                                                | 1 =     | _                                       |          |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|        | 39       | 5      |                                                                                | 112     |                                         | 00       | an          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 56-      | 3      | Same                                                                           | 1/1     | 73                                      | 90       | 20          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 57-      | V      |                                                                                | 11.0    | 1                                       | 10.      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | 3/       | 8      |                                                                                | 1/1     | ٠,                                      | -        |             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|        | 58-      | V      | Same                                                                           | 1/1     | 1 24                                    | 80       | SB          | - also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|        | 59       | 5      | 0000                                                                           | 14      | 4                                       | , -      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|        | MA       |        | 1                                                                              |         |                                         |          | l –         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

**Figure A-6.** Soil boring log B-2 (C-1) *continued* 

|        |                  |        |                        |        |             |             |                                       | SHEET 4 OF 4         |
|--------|------------------|--------|------------------------|--------|-------------|-------------|---------------------------------------|----------------------|
| PROJE  | CT NO.           |        | NAME                   |        | c           | OUNTY       |                                       | _ DISTRICT           |
| LOCATI | ON               |        | TOWNS                  | HIP    | R           | ANGE ,      |                                       | SECTION              |
|        |                  |        |                        |        |             |             | CE ELEVATION                          |                      |
| EQUIPM | MENT TYP         | E      | / R                    | IG NO. | _           |             | BORING                                | NO. #2 (C-1)         |
| DATE S | TARTED           |        | COMPLETED              |        |             | _ DRILI     | ED BY                                 |                      |
| LOGGE  | D BY             |        | BORING TYPE:           | A      | UGER, WA    | SHED, PE    | RCUSSION, ROT                         | ARY,                 |
| WATER  | TABLE:           | 0 HR   | BORING TIPE.           |        | ASED, UNG   | ASED, D     | RILLING MUD,                          |                      |
| SAMPL  | E CONDIT         | IONS:  | DISTURBED SAMPLE TYPES |        |             |             |                                       |                      |
|        |                  |        | GOOD .                 | SB: S  | SPLIT BAF   | RREL        | T: TO                                 | RVANE (TSF)          |
|        |                  |        |                        | S: 5   |             |             | V: IN-                                | SITU VANE TEST (TSF) |
|        |                  |        | CORE SAMPLE            |        | ROCKCO      |             | SIZE                                  | * * * * .            |
| ELEV.  | DEPTH            | S.P.T. |                        |        | SAMPLES     | 3           | ·                                     |                      |
| (FT.)  | (FT.)<br>(0⊙     | BLOWS  | MATERIAL DESCRIPTION   | CON.   | NO.<br>TYPE | REC.<br>(%) | TESTS                                 | REMARKS              |
|        | 61-              | 9      | Same                   | 1/7    | 15          | 70          | SB =                                  |                      |
|        | 102 <del>-</del> | -7     |                        |        |             |             |                                       |                      |
|        | 103-             | B .    |                        | ///    |             |             | 010                                   |                      |
|        |                  | 7      | Same :                 | 1/17   | 20          | 60          | SB =                                  |                      |
|        | 104-             |        |                        | 1/=    | _           |             |                                       |                      |
|        | oh.              | Q      |                        | 7/-    | 11          | 1           |                                       |                      |
|        | 60-              | 8      | Same .                 | . 1/// | 1           | 60          | SB -                                  |                      |
|        | 67_              |        |                        |        |             |             | · · · · · · · · · · · · · · · · · · · | -                    |
|        | 68_              | -10    |                        | 117    | L           |             |                                       |                      |
|        | 69               | 5.     | Same                   | 11/4   | 28          | 60          | SB =                                  | - ·                  |
|        | -V/1-            | - 65   |                        | +      |             |             | _                                     |                      |
|        | 70               | 10     |                        | 111    | - (1        |             |                                       |                      |
|        | 71-              | 7      | Same.                  | 1/4    | 29          | 70          | SB =                                  | 1                    |
|        | -11.5            | - 40   | EOB 71.5'              |        |             |             | _                                     |                      |
| 6.7    |                  |        | . COB. 11.5            | -      |             |             | · · ·                                 | -                    |
|        | -                |        |                        | 1 7 =  |             |             | · =                                   |                      |
|        | -                |        |                        |        |             |             | =                                     | ,81                  |
|        |                  |        | ,                      | -      | -           |             | _                                     | <del></del> . '      |
|        | _                |        |                        |        | 1_          |             |                                       | 1_                   |
|        |                  |        | *                      | -      | L           |             |                                       |                      |
|        |                  |        |                        | =      | F           |             |                                       | T- "                 |
|        | -                | -      |                        | 1      |             |             |                                       |                      |
|        | _                |        |                        | . —    | $\vdash$    |             | _                                     | <del> -</del>        |

**Figure A-6.** Soil boring log B-2 (C-1) *continued* 

| ۳ | LEGISIE | ~ ~ | EFA | LIME |    | 4 11 | Octable | OKIA | 11 |
|---|---------|-----|-----|------|----|------|---------|------|----|
|   | FIFI    | n   | RC  | D    | NC | 1    | റദ      |      |    |

|       |        | 7.      |                        |       |             |             | s            | HEET 1 OF                           |
|-------|--------|---------|------------------------|-------|-------------|-------------|--------------|-------------------------------------|
|       |        |         | NAME AWAR CAST         |       |             |             |              |                                     |
| LOCAT | ION Ok | shumple | TOWNSH                 |       |             |             |              |                                     |
|       | NUMBER |         |                        |       |             |             | CE ELEVATION |                                     |
|       |        |         | 75 R                   |       |             |             |              |                                     |
|       |        |         | COMPLETED _            |       |             |             |              |                                     |
| LOGGE | DBY J  | Hon     | BORING TYPE:           | A     | ASED LING   | ASED D      | RUSSION, ROT | ARY,                                |
| WATER | TABLE: | 0 HR    | 24 HRS HRS             | _ `   | noeb, one   | MOLD, D     |              |                                     |
|       |        | IONS:   | DISTURBED SAMPLE TYPES |       |             |             |              | TER CONTENT (%)                     |
|       |        |         | GOOD                   | SB S  | PLIT BAR    | RREL        | T: TOF       | RVANE (TSF)<br>SITU VANE TEST (TSF) |
|       |        |         | LOST                   | S: 5  | SHELBY T    | UBE         | V: IN-S      | SITU VANE TEST (TSF)                |
|       |        |         | ÇORE SAMPLE            |       | ROCKCO      |             | SIZE         |                                     |
| ELEV. | DEPTH  | S.P.T.  |                        |       | SAMPLES     |             |              |                                     |
| (FT.) | (FT.)  | BLOWS   | MATERIAL DESCRIPTION   | CON.  | NO.<br>TYPE | REC.<br>(%) | TESTS        | REMARKS                             |
| 1     | M      | 10      | Dug Down               | 17    | W           | 7           | 1/=          |                                     |
|       | 2 —    | 2       | DARK GEEY SANTS        | 1//   | 1           | 50          | SB =         | _                                   |
|       | 3-     | 3 2     |                        | 11/1/ |             |             |              |                                     |
|       | 4 —    | 3       | TANSAND                | 1///  | _2          | 70          | SB =         |                                     |
|       | 10-    | 2       | LIGHT TAN SAND         | 1/1   | 3           | 10.         | SB           |                                     |
| -     | 7_     | 4       | SAME/SLIGHTLY<br>SILTY | 1/2   | 4           | 75          | SB =         | - 1                                 |
|       | 8      | . 4     | LIGHT TAN TO BROSUM    | 11/2  | -6          | 70          | SB =         | _                                   |
|       | 9      | . 5     | SOME SILT              | 1/1/  | 5           | 10          | JV _         |                                     |
|       | 10     | 4.      | Tan Sand               | 101   | 10          | 70          | SB_          |                                     |
|       | 11 -   | 300     | Tan Sand w/trace       | 11/4  | 7           | 70          | SB =         |                                     |
|       | 13-    | 3 7     | Tan Sand               | 1//2  | 3           | 60          | SB =         |                                     |
|       | 14 -   | 2       | tan Sanid              | 1/4   | 9           | 95          | SB =         |                                     |
|       | 15 -   | 2       | Brain to tan           |       | 10          | 25          | SB =         |                                     |
|       | 17 _   | 3       | 2017 100               | 1111  | 10          |             | _            |                                     |
|       | 10     |         | . 186                  | _     | 1           |             | _            |                                     |
|       | 18 —   |         |                        |       |             |             | =            |                                     |
|       | 10 -   |         |                        |       |             |             | =            |                                     |
|       | 20     |         |                        |       |             |             |              |                                     |

**Figure A-7.** Soil boring log B-3 (T-1)

|                    |             |                 |                                    | FIELD BO     | JRING | LOG              |             |          | S        | HEET     | 2              | OF     | Lyce |
|--------------------|-------------|-----------------|------------------------------------|--------------|-------|------------------|-------------|----------|----------|----------|----------------|--------|------|
| PROJE              | CT NO.      |                 | NAME _                             |              |       | С                | OUNTY       |          |          |          |                |        |      |
|                    | _           |                 |                                    | TOWNSH       |       |                  |             |          |          |          |                |        |      |
|                    |             |                 |                                    |              |       |                  |             | CE ELEVA |          | _        |                |        |      |
| EQUIPN             | MENT TYP    | E               |                                    | A V R        |       |                  |             | BOF      |          |          | 131            | T-     | i)   |
|                    |             |                 | ,                                  |              |       |                  |             | ED BY    |          |          |                |        |      |
| LOGGE              | D BY        |                 | BORING TYPE: AUGER, WASHED, PERCUS |              |       |                  |             |          | , ROTA   | ARY,     |                |        |      |
| WATER              | TABLE:      | 0 HR            | 24 HRS HRS                         |              |       |                  | ID, _       |          |          |          |                |        |      |
| SAMPLE CONDITIONS: |             | IONS:           | DISTURBED                          | SAMPLE TYPES |       | AUGER TESTS: W.C |             |          |          |          |                |        |      |
|                    |             | E               | GOOD                               |              | SB:   | SPLIT BAF        | RREL        | T:<br>V: | TOR      | VANE     | (TSF)          | OT /T  | 05)  |
|                    |             |                 | LOST                               |              | S:    | SHELBYT          | UBE         | v.       | IN-5     | IIU VA   | NE IE          | 51 (13 | 5F)  |
|                    |             | Γ               | CORE SAMPI                         | .E           | RC:   | ROCK CO          | RE          | SIZE     |          |          |                |        |      |
|                    |             |                 | <del></del>                        |              | Т     | SAMPLES          | 3           |          | 1        |          |                | _      |      |
| (FT.)              | (FT.)       | S.P.T.<br>BLOWS | MATERIAL D                         | ESCRIPTION   | CON.  | NO.<br>TYPE      | REC.<br>(%) | TEST     | S        |          | REMA           | RKS    |      |
|                    | 21-         | 3               | Tan San<br>Trace of                |              | 11/2  |                  | 40          | SB       | =        |          |                |        |      |
|                    | -           |                 | 7.0000 04                          | 017          | 1101  | 4                |             |          | -        |          |                |        |      |
|                    | 22-         |                 | 1                                  |              | =     |                  |             |          | =        |          |                |        |      |
|                    | 23—         |                 | 1                                  |              | 1 =   | _                |             |          |          |          |                |        |      |
|                    | 24-         |                 | 1                                  |              | =     | 1                |             |          | =        | _        |                |        |      |
|                    | 75          |                 | 1                                  |              |       |                  |             |          |          |          |                |        |      |
|                    | Marylan man | 5               | Sity fan<br>Trace o                | Sand W/      | 177.  | - 13             | 60          | SB       | _        |          |                |        |      |
|                    | 26-         | q               | Traceo                             | range Sand   | 1/1/  |                  | WU          | 212      |          | -        |                |        |      |
|                    | 27-         |                 | -                                  |              | 1     | -                |             |          | _        | _        |                |        |      |
|                    | 28-         |                 | 1                                  |              | =     | 1_               |             |          |          | _        |                |        |      |
|                    |             |                 | 1                                  |              | -     | 1                |             |          | _        |          |                |        |      |
|                    | 29-         |                 | 1                                  |              | =     |                  |             |          |          |          |                |        |      |
|                    | 33          | 7               |                                    |              | 717   | _                | 3.0         |          | -        | _        | - material and |        |      |
|                    | 31 -        | 7               | Saw                                | W.           | 1/    | 13               | 08          | SB       | =        | _        |                |        |      |
|                    |             | 79              |                                    |              | -4-   |                  |             |          |          |          |                |        |      |
|                    | 32 —        |                 | 1                                  | ,            | =     | T                |             | 11-      |          |          |                |        |      |
|                    | 33 —        |                 | 1                                  |              | =     |                  |             |          | $\equiv$ | _        |                |        |      |
|                    | 34 -        | _               | -                                  |              | -     | —                |             |          | _        | <b>—</b> |                |        |      |
|                    | 35          |                 |                                    |              | _     | 1                |             |          |          |          |                |        |      |
|                    |             | 5               | Carnel                             | 1            | 1/1   | 44               | 70          | SB       | _        |          |                |        |      |
|                    | 36-         | V               | Same                               | _            | 1/1/  |                  | 10          | 20       | 104      |          |                |        |      |
|                    | 37-         |                 | -                                  |              | -     | 1                |             |          | _        | <u></u>  |                |        |      |
|                    | 38 —        |                 | 1                                  |              | =     | 1_               |             |          | =        | _        |                |        |      |
|                    |             |                 | -                                  |              | -     | -                |             |          | _        |          |                |        |      |
|                    | 39-         |                 | 1                                  |              |       |                  |             | L        |          |          |                |        |      |

Figure A-7. Soil boring log B-3 (T-1) continued

|        | -        |        |                   | FIELD BO     | ORING   | LOG          |             |                  | S     | HEET _   | 3     | OF    | Ser               |
|--------|----------|--------|-------------------|--------------|---------|--------------|-------------|------------------|-------|----------|-------|-------|-------------------|
| PROJE  | CT NO.   |        | NAME _            |              |         | С            | OUNTY       |                  |       |          |       |       |                   |
|        |          |        |                   | TOWNSH       |         |              |             |                  |       |          |       |       |                   |
| ROAD   | NUMBER   |        | \ n               |              |         |              |             |                  |       |          |       |       |                   |
| EQUIP  | MENT TYP | E      | CITA              | MPR          | IG NO.  |              |             | BOF              | RING  | NO. 7    | 3     | 1     | 1)                |
| DATE S | TARTED   |        | <u> </u>          | COMPLETED    |         |              | DRILL       | ED BY            |       |          |       |       | ,                 |
| LOGGE  | D BY     |        | B                 | ORING TYPE:  | A       | UGER, WA     | SHED, PE    | RCUSSION         | ROTA  | ARY,     |       |       |                   |
| WATER  | TABLE:   | 0 HR   | 24 HRS            | HRS          |         | ASED, UNG    | CASED, D    | RILLING MU       | ID, _ |          |       |       |                   |
| SAMPL  | E CONDIT | IONS:  | DISTURBED         | SAMPLE TYPES | E A A   | UGER         | TES.        | <u>rs:</u> w.c.: | WAT   | TER CO   | NTEN  | T (%) |                   |
|        |          |        | GOOD              |              | SB: S   | SPLIT BAR    | RREL        | T:               | TOR   | RVANE (  | (TSF) |       |                   |
|        |          |        | LOST              |              |         | SHELBY T     |             | V:               | IN-S  | ITU VA   | NE TE | ST (T | SF)               |
|        |          | ľ      | The second second | Æ            |         |              |             | SIZE             |       |          |       |       |                   |
| ELEV.  | DEPTH    | S.P.T. |                   |              |         | SAMPLES      | 6           |                  |       |          |       |       |                   |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL D        | ESCRIPTION   | CON.    | NO.<br>TYPE  | REC.<br>(%) | TEST             | S     |          | REMA  | RKS   |                   |
|        | 4/_      | 4,     | Sam               | \l           | 1/1     | 15           | 50          | SB               | Ξ     |          |       |       |                   |
|        | - '      | 9      | 0000              |              | 7/1     |              | 00          | 00               | -     |          |       |       |                   |
|        | 42_      |        |                   |              |         | _            |             |                  |       | $\vdash$ |       |       |                   |
|        | 43-      |        | (8) (i)           |              | -       | <del>-</del> |             |                  | _     | $\vdash$ |       |       |                   |
|        | 44 -     |        |                   |              |         |              |             |                  |       | L        |       |       |                   |
|        | 110      |        |                   |              | -       |              |             |                  | _     |          |       |       |                   |
|        | 45       | 6      | 0                 |              | 17-1    |              |             |                  | _     |          |       |       |                   |
|        | 46 -     | 8      | Sanl              |              | 11/11   | 16           | 60          | SB               | _     | _        |       |       |                   |
|        | 47 —     |        |                   |              | ,       |              | V.          |                  |       |          |       |       |                   |
|        |          |        |                   |              | I —     | 1            |             |                  | _     |          |       |       |                   |
|        | 48 —     |        |                   |              | $\perp$ | G.           |             |                  | =     |          |       |       |                   |
|        | 49 -     |        |                   |              | _       | -            |             |                  | _     | -        |       |       |                   |
|        | 501      |        | 7                 |              |         |              |             |                  |       |          |       |       |                   |
|        | John     | 9      | Jan Sang          | W/Trace      | 1//     | 0-7          | 70          | CD               | _     |          |       |       |                   |
|        | 51-      | 7      | of S              | 11-          | 1////   |              | 10          | 20               |       |          |       |       |                   |
| 140    | 52-      |        |                   | -2           | 1 -     | -            |             | /                | _     | -        |       |       |                   |
|        |          |        |                   | 7.           | =       | _            | 0           |                  | =     | _        |       |       |                   |
|        | 53       |        |                   |              |         |              |             |                  | _     | 1        |       |       |                   |
|        | 54-      |        | v                 |              | 4       |              | 1           | l                |       | $\vdash$ |       |       |                   |
|        | 55       | - 2    | 111110            | 0 10/1.1     | 777     | -            | 100         |                  |       | -        |       |       |                   |
|        | 56 -     | 3      | Light tan         | Sarawi       | 1/1/    | 18           | 10          | SB               |       | _        |       |       |                   |
|        |          | _5     | trace o           | 5117         | 114     | 10           | un          | 00               | -     |          |       |       | and the second of |
|        | 57—      |        |                   |              | 2       |              |             |                  |       |          |       |       |                   |
|        | 58-      |        |                   |              | 7600    | -            |             |                  | _     | -        |       |       |                   |
|        | 50-      |        |                   |              |         | _            |             | 850              |       | L        |       |       |                   |
| 1      | - ) -/   |        |                   |              |         |              |             |                  |       |          |       |       |                   |

Figure A-7. Soil boring log B-3 (T-1) continued

|        |          |        | s          | TATE OF FLORIDA DEPAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |             | TION        | s              | HEET 4       | FORM 675-020-12<br>MATERIALS<br>0F |
|--------|----------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------------|----------------|--------------|------------------------------------|
| PROJE  | CT NO.   |        | NAME       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | c           | OUNTY       |                |              |                                    |
|        |          |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             |             |                |              |                                    |
| ROAD   | NUMBER   |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | SURFAC      | CE ELEVATION   |              |                                    |
| EQUIPN | MENT TYP | E      |            | RIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G NO  |             |             | BORING I       | NO. #3/      | (T-1)                              |
| DATE S | TARTED   |        |            | COMPLETED _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |             | _ DRILL     | ED BY          |              |                                    |
| LOGGE  | D BY     |        | E          | SORING TYPE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |             |             | RCUSSION, ROTA |              |                                    |
| WATER  | TABLE:   | 0 HR   | 24 HRS     | HRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C/    | ASED, UNC   | ASED, DE    | RILLING MUD, _ |              |                                    |
| SAMPL  | E CONDIT | IONS:  | DISTURBED  | SAMPLE TYPES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A: A  | UGER        | TEST        | S: W.C.: WAT   | TER CONTEN   | NT (%)                             |
|        |          | P      | GOOD       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SB: S | PLIT BAR    | REL         | T: TOR         | (VANE (TSF)  |                                    |
|        |          | Ì      | LOST       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | HELBY T     |             | V: IN-S        | SITU VANE TE | ST (TSF)                           |
|        |          |        | CORE SAMP  | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | OCK CO      |             |                |              |                                    |
| ELEV.  | DEPTH    | S.P.T. | T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | SAMPLES     | 3           |                |              |                                    |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL D | ESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CON.  | NO.<br>TYPE | REC.<br>(%) | TESTS          | REMA         | ARKS                               |
|        | 61-      | 4      | Sam        | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/7   | 19          | 60          | SB =           |              |                                    |
|        | 62-      | _      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,1-1 | _           |             |                |              |                                    |
|        |          | 0, 1   | -1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |             |             |                |              |                                    |
|        | 63-      |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             |             |                |              |                                    |
|        | 64-      |        | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00  |             | 8235        | 200            |              |                                    |
|        | 5        | -7     | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.7  |             | -           |                |              |                                    |
|        | 100-     | 9      | Tan Sil    | ty sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/1/1 | 20          | 60          | SB =           | of Same      | /4 ZO                              |
|        | 67-      | ,      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |             | 760         |                |              |                                    |
|        | V8 -     |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             |             |                |              |                                    |
|        |          |        | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N-    |             |             |                |              |                                    |
|        | 6d -     |        | <u></u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4   |             |             |                |              |                                    |
|        | 70       | 4      | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110   | _           |             |                | 707/10       |                                    |
|        | 71_      | 6      | Sam        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VI    | 21          | 16          | SB =           |              |                                    |
|        | 415      | 6      | EAD        | 71.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11    |             | a           |                | × ***        |                                    |
|        | -        |        | 202        | 71.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |             |             |                |              |                                    |
|        | -        |        | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sign  | _           |             | -              | <b>—</b>     |                                    |
|        | _        |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39    | _           |             |                | _            |                                    |
| -      |          |        | -          | 35 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -     | 223         | -           | of the second  |              |                                    |
|        |          |        | 7 🐷        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             |             |                | TA A         | Page 1                             |
| - 1    | -        |        | - 3        | The state of the s |       |             | A PARK      |                | - / 91       | Carlo de                           |
|        | l —      |        | and the    | . 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100   | _           |             |                | - 12         | The same of                        |
|        | l        |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | P. Cont.    |             | - 4            | - 1          | 94                                 |
|        |          |        | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10000 |             |             | -              |              |                                    |
| 2      | _        |        | 1          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | _           |             | 20             | 23           | -4                                 |
|        |          |        | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | _           |             | 7.54           | 100          |                                    |

Figure A-7. Soil boring log B-3 (T-1) continued

|        |          |        |                  |                |        |             |             |                                         |               | TEET TOP Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|----------|--------|------------------|----------------|--------|-------------|-------------|-----------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJE  | CT NO.   |        | NAME.            | Auger Cos      | Pile   | Researce    | OUNTY       | Lake                                    |               | DISTRICT 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LOCAT  | ON OR    | ahump  | ka, FL           | TOWNSH         | IIP    | R           | ANGE        |                                         |               | DISTRICT 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ROAD   | NUMBER   |        |                  |                |        |             | SURFA       | CE ELEVA                                | TION          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EQUIPM | MENT TYP | E CME  | 75               | R              | IG NO. | 2600        | 55          | BOR                                     | ING N         | 10. #4 (4-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DATE S | TARTED   | 9/13/  | 2016             | COMPLETED _    | -      |             | _ DRILI     | LED BY                                  | Bru           | uc/kyle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LOGGE  | D BY     | alton, | Todal            | BORING TYPE:   |        |             |             | -                                       |               | RÝ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| WATER  | TABLE:   | 0 HR   | 24 HRS           | HRS            | c      | ASED, UNO   | CASED, D    | RICLING MU                              | D, _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPL  | E CONDIT | IONS:  | DISTURBE         | D SAMPLE TYPES | E A: A | UGER        | TES'        | TS: W.C.:                               | WAT           | ER CONTENT (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |          |        | GOOD             |                |        | SPLIT BAF   |             | T:                                      | TORY          | VANE (TSF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |          |        | LOST             |                | -      | HELBY T     |             | V:                                      | IN-SI         | TU VANE TEST (TSF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |          |        | CORE SAM         | PI E           |        | ROCKCO      |             | SIZE                                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |          |        | L CORE SAW       | I LC           | _      |             |             |                                         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELEV.  | DEPTH    |        | MATERIAL         | DESCRIPTION    | _      | SAMPLES     |             | TESTS                                   |               | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL         | DECOMINATION   | CON.   | NO.<br>TYPE | REC.<br>(%) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               | NEWARRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| U      |          |        | Derg             | Down           | E      | A           | K           | X                                       |               | AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 3 —      | 1 2    | Brown            | Sand           | 1/7    | -1          | 60          | SB                                      | $\exists$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 4 -      | 1      | Tan to           | Brown Sound    | 1/1    | -2          | 40          | SB                                      | 7             | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 9        | 2      | Light +          | an Sand        | 11/4   | 0           |             | 10                                      | コ             | 1,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7      | 6        | 4      | witrace          | orange sand    | 1/1/   | -5          | 50          | SB                                      | $\pm$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 7        | 33     | Sar              | nl             | 1/4    | , 4         | 60          | SB                                      | $\exists$     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 9 —      | 3      | Sar              | N              | 11/4   | 5           | 60          | SB                                      | $\exists$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 10       | 3 4    | San              | e              | 1/4    | V           | 60          | SB                                      | _             | A Total Control of the Control of th |
|        | 12-      | 3      | Brown +          | o light tan    | WH     | 7           | 66          | SA                                      | $\exists$     | -41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 13       | 3      | Dary Mila        | ceathings som  | 1/1/1  | 1           | -0          | /                                       | $\exists$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6      | 14 —     |        | 78               |                | ΙΞ     | 4           |             | i a                                     | $\exists$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9      | 15       |        |                  |                |        | 17/15       | 1           | 3                                       | $\exists$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 10-      | 1 2    | Dark             | Brown          | 1/     | _8          | 30          | SB                                      | =             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 7-       |        |                  |                | E      |             |             |                                         | $\exists$     | * material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 18 —     |        |                  | and the same   | -      | _           |             |                                         | $\rightarrow$ | is hear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 19 -     |        |                  |                | =      | 1           |             |                                         | コ             | - 50St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 28       |        | 2 <sup>2</sup> 3 |                | _      | · diff      | F. 4        |                                         | $\dashv$      | 1 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 40       |        |                  | 4.             | 14.0   | 100         | The same of | _                                       | $\rightarrow$ | - MOH!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Figure A-8.** Soil boring log B-4 (L-2)

|                |                |                 |             | FIELD BC     | KING        | LOG          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | SH            | EET _  | 2        | OF _   | 20050    |
|----------------|----------------|-----------------|-------------|--------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------|----------|--------|----------|
| PROJE          | CT NO.         |                 | NAME        |              |             | c            | OUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |               |        |          |        |          |
| LOCATI         | ON             |                 |             | TOWNSH       | IP          | R            | ANGE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               | SECT   | TION     |        |          |
| ROAD N         | NUMBER         |                 |             | u la a       | 9           |              | SURFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CE ELEVA   | TION          | _      | 7.7      | ,      | _        |
| EQUIPN         | MENT TYP       | E               |             |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOR        |               |        |          |        | Z)       |
|                |                |                 |             | OMPLETED _   |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |        |          |        | _        |
| LOGGE          | D BY           |                 | BC          | RING TYPE:   | Α           | UGER, WA     | SHED, PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RCUSSION,  | ROTA          | RY,    |          |        | —        |
| WATER          | TABLE:         | 0 HR            | 24 HRS      | HRS          |             | ASED, UNC    | CASED, DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RILLING MU | D, _          |        |          |        | _        |
|                | E CONDIT       |                 |             | SAMPLE TYPES |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |        |          | (%)    |          |
|                |                |                 | GOOD        |              | SB: S       | SPLIT BAF    | RREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T:         | TORY          | VANE ( | (TSF)    |        |          |
|                |                |                 | LOST        |              |             | HELBY T      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V:         | IN-SI         | TU VAI | NE TES   | ST (TS | F)       |
|                |                | П               |             |              |             | ROCKCO       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIZE       |               |        |          |        |          |
|                |                |                 | CORE SAMPLI | -            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ OILL     |               |        |          |        | $\dashv$ |
| ELEV.<br>(FT.) | DEPTH<br>(FT.) | S.P.T.<br>BLOWS | MATERIAL DE | SCRIPTION    | _           | NO.          | REC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TESTS      | s             |        | REMAR    | RKS    |          |
| (11.)          | 20             | beomo           |             |              | CON.        | TYPE         | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | _             |        |          |        | _        |
|                | 21_            | 1               | Light Brown |              | 1/4         | _9           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB         | #             | _      |          |        |          |
|                | 22-            |                 |             |              | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | 7             | _      |          |        |          |
|                |                |                 |             |              |             | L            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ユ             | _      |          |        |          |
|                | 23-            |                 |             |              | =           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\dashv$      |        |          |        |          |
|                | 24-            |                 |             |              |             | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\exists$     | _      |          |        |          |
|                | 75             | V               |             |              | 777         | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 100           | _      |          |        |          |
|                | 26-            | 7               | Light Bi    | nd           | // <u>/</u> | 40           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB         | 4             | _      |          |        |          |
| *              | 27-            |                 |             | 1101         |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | $\exists$     |        |          |        |          |
|                | 28             |                 | Sec.        |              | -           | L            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\exists$     | _      |          |        |          |
|                |                | 3               |             |              | =           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\exists$     | _      |          |        |          |
|                | 29-            |                 |             |              | =           | $\vdash$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\exists$     | _      |          |        |          |
|                | 30             | - 10            |             | 15,0117      | 777         | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | $\neg$        |        |          |        | -        |
|                | 31-            | 9               | Brown St.   | ghtly Stity  | WI          | 1.1          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58         | コ             | _      |          |        |          |
|                | 00             | LE              | San         | 9            | 11          | 7,           | TO SHAPE OF THE PARTY OF THE PA |            | -             |        |          |        |          |
|                | 52             | d               |             |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | $\exists$     | _      |          |        |          |
|                | 33             | 10              | 1           |              | -           | <del>-</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | +             | _      |          |        |          |
|                | 24             | 187             |             |              | =           | <u>_</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | =             | _      |          |        |          |
|                | 26             | 1,              |             |              | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -             | _      |          |        |          |
|                | 20             | 5               | Silty Br    | COLUM Sand   | 114         | 10           | KA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co         | $\exists$     |        |          |        |          |
|                | 36-            | 7               | 2114 131    | OWINGO       | 1/1         | 1.6          | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB         | $\pm$         | _      |          |        |          |
|                | 37-            |                 |             | 17:          | _           | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | =             | _      |          |        |          |
|                | 38-            |                 | - 10 Th     |              | - 1         | 200          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\exists$     | _      |          |        |          |
|                | 30             |                 |             |              | PROBLET S   | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | $\neg$        |        |          |        | 14       |
|                | 37             |                 |             |              | -           | 20           | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | $\exists$     | _      |          |        |          |
|                | 110            | (0)             |             |              | 11          | 163          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          | $\rightarrow$ |        |          | -      | ,        |
|                | 41-            | 9               | Green.      | O Grey       | 1///        | 112          | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB-        | _             |        | RECYCLED | DADED  | •        |
|                | 111            | 11              | CIO         | all          | 111         | 1            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010-       |               | 171    | 7,0      | PAPER  | •        |
|                | (,,            | 21              | EOB L       | 11.5'        |             | THE STATE OF | 86.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |               |        | 150      | 1      |          |

Figure A-8. Soil boring log B-4 (L-2) continued

|                                               |                                       |                 |                           | FIELD BO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RING     | _OG                           |                     | *                            | SHEET 1              | MATERIALS 0859 |
|-----------------------------------------------|---------------------------------------|-----------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|---------------------|------------------------------|----------------------|----------------|
| ROAD I<br>ROAD I<br>EQUIPI<br>DATE S<br>LOGGE | ON OKO NUMBER MENT TYP TARTED D BY TO | E CME           | -75<br>2016               | TOWNSH  RI  COMPLETED _ BORING TYPE:  HRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G NO     | 26001<br>26001                | SURFA               | CE ELEVATI BORIN LED BY      | SECTION ON IG NO. #5 | ·(c-z)         |
|                                               |                                       | IONS:           | DISTURBEI<br>GOOD<br>LOST | D SAMPLE TYPES PLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB: S    | UGER<br>SPLIT BAF<br>SHELBY T | TEST<br>RREL<br>UBE | TS: W.C.: V<br>T: T<br>V: II |                      |                |
| ELEV.<br>(FT.)                                | DEPTH<br>(FT.)                        | S.P.T.<br>BLOWS | MATERIAL                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | NO.<br>TYPE                   | REC.<br>(%)         | TESTS                        | REM                  | IARKS          |
| V                                             | 1-                                    | <b>A</b> 1      | ,                         | Pown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1        | 1                             |                     | <u></u>                      |                      |                |
|                                               | 3-                                    | 2 2             | Sa                        | nd not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/1      | -1                            | 30                  | SB                           | +                    |                |
| 8                                             | 5                                     | 2 2 3           | San                       | The state of the s | 1/4      | 2                             | 30                  | SB -                         | Ϊ                    |                |
|                                               | 6-                                    | 3               | Tan to F                  | sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> | _3                            | 40                  | SB -                         | _                    |                |
|                                               | 8                                     | 3               | Sam                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/4      | Н                             | 4/0                 | SB =                         | #                    |                |
|                                               | 9 -                                   | 54              | Sam                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/7      | -5                            | 50                  | SB -                         |                      |                |
|                                               | 10-                                   | 3               | tan Sai                   | range Said                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/1     | b                             | 50                  | SB -                         | - · ·                |                |
|                                               | 12_                                   | 71 07           | Tan                       | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2/1    | _7                            | 60                  | SB                           |                      |                |
|                                               | 13-                                   | 2               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ξ        |                               |                     | =                            | 土                    |                |
|                                               | 15                                    |                 | 0                         | F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 772      |                               |                     | -                            | _                    |                |
|                                               | 16-                                   | 3               | BLOMA                     | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/1      | -8                            | 30                  | SB                           | +                    |                |
|                                               | 18-                                   |                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               | *                   | ]                            | 1                    | 4              |
|                                               | 19-                                   |                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |                     | =                            | +                    |                |
|                                               | 40                                    |                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                               |                     |                              |                      |                |

**Figure A-9.** Soil boring log B-5 (C-2) *continued* 

|       |          |          |                        |          |                  |           |              | SHEET OF             |
|-------|----------|----------|------------------------|----------|------------------|-----------|--------------|----------------------|
| ı     |          |          | NAME                   |          |                  |           |              | DISTRICT             |
|       |          |          |                        | IIP _    |                  |           |              | SECTION              |
|       |          |          |                        | 1        | / 1              |           | CE ELEVATION |                      |
| EQUIP | MENT TYP | E        | R                      | G NO.    | +                | -         |              | NO. #5 (C-Z)         |
|       |          |          | COMPLETED BORING TYPE: |          | ALICED WA        |           |              | ARV                  |
| l     |          |          |                        |          | CASED, UNG       | CASED, DE | RILLING MUD, | ART,                 |
| WATER | R TABLE: | 0 HR     | 24 HRS HRS             |          |                  |           |              |                      |
| SAMPL | E CONDIT | IONS:    | DISTURBED SAMPLE TYPES | : A:     | AUGER            | TEST      | IS: W.C.: WA | TER CONTENT (%)      |
|       |          |          | GOOD                   |          | SPLIT BAR        |           | T: TOP       | RVANE (TSF)          |
|       |          |          | LOST                   |          | SHELBYT          |           | V: IN-S      | SITU VANE TEST (TSF) |
|       |          | П        | CORE SAMPLE            |          | ROCK CO          |           | SIZE         |                      |
|       |          |          | OOKE SAMILE            | Τ        | SAMPLES          |           |              |                      |
| ELEV. |          | S.P.T.   | MATERIAL DESCRIPTION   | $\vdash$ | NO               | REC.      | TESTS        | REMARKS              |
| (FT.) | (FT.)    | BLOWS    |                        | CON      | TYPE             | (%)       |              |                      |
|       |          | 35       | Brown Slightly Sity    | 11/      | . 0              | 50        | SB =         |                      |
|       | 21-      | Ч        | Sand                   | 1/7      | 1                | 30        | OD _         |                      |
|       | 22-      |          |                        | 1 =      | _                |           | _            | - 100                |
|       | 23-      |          | 2 2                    | -        | +                |           | _            | <del> -</del>        |
|       | 24       |          |                        | =        | 1                |           | _            | 1_                   |
|       | 25       |          |                        |          | ┨                |           |              |                      |
|       | 25       | 5        | tan sand w             | VIA      |                  | 50        | SB =         | -                    |
|       | 26-      | 7        | Trace of Sil+          | 1//      | 10               | 20        | 20 -         |                      |
|       | 27 —     |          |                        | l -      | +                |           | _            | <del>-</del>         |
| İ     | 28-      |          |                        | =        | 1                | i         | _            | <u></u>              |
|       | 29_      |          | 5 a                    | 1 =      | ┨                |           |              |                      |
|       |          |          |                        | =        | <del>-</del>     |           | _            | 7                    |
|       | 38       | 4        | tan Sand               | 77-      |                  |           | 4.60         |                      |
|       | 31-      | 7        | 2011                   | 1/1      | <del>     </del> | 50        | SB -         | <del>-</del>         |
|       | 32-      |          |                        | 1 =      | 1                | 7         | _            | _                    |
|       | 33-      |          |                        | 1 =      | 1                |           | _            |                      |
| ,     |          | <u> </u> |                        | -        | $\dashv$         |           | _            | -                    |
|       | 34       |          |                        | =        |                  |           | =            | Γ                    |
|       | 35       | 8        | Slightly Silty Brown   | 11/_     | _                | 10        | _            | _                    |
|       | 36-      | 8        | Sand                   | 1/1/2    | 7/12             | 40        | SB -         | <del> -</del>        |
|       | 37-      |          |                        | -        | 1                |           | _            | _                    |
| 12    | 38-      |          | 4                      | -        | 丄                |           | _            | <u>L</u>             |
|       | 78       |          |                        | 1 =      | $\top$           |           | =            | Γ .                  |
|       | 34-      |          |                        | 1 =      | _                |           | _            | <u> </u>             |
|       | 40       |          |                        | -        | +-               |           | _            |                      |

Figure A-9. Soil boring log B-5 (C-2) continued

|        |          |        |                             |        |                |             |            | 0        | HEET S_OF            |
|--------|----------|--------|-----------------------------|--------|----------------|-------------|------------|----------|----------------------|
| PROJE  | CT NO.   |        | NAME                        |        | C              | OUNTY       |            |          | DISTRICT             |
| LOCATI | ION      |        | TOWNS                       | HP _   |                |             |            |          | SECTION              |
| ROAD   | NUMBER   |        |                             |        |                |             | CE ELEVA   |          |                      |
| EQUIPN | MENT TYP | Ε      | R                           | IG NO. |                |             | BOR        | RING     | NO. # 5 (C-2)        |
|        |          |        | COMPLETED                   |        |                | DRILL       | ED BY      |          | /                    |
| LOGGE  | D BY     |        | BORING TYPE:                |        | AUGER, WAS     | SHED, PE    | RCUSSION   | ROT      | ARY,                 |
| WATER  | TABLE:   | 0 HR   | 24 HRS HRS                  |        | CASED, UNO     | ASED, DI    | RILLING MU | D, _     |                      |
| SAMPL  | E CONDIT | IONS:  | DISTURBED SAMPLE TYPES      | È A:   | AUGER          | TES'        | TS: W.C.:  | WA'      | TER CONTENT (%)      |
|        |          |        | GOOD                        | SB:    | SPLIT BAR      | RREL        |            |          | RVANE (TSF)          |
|        |          |        | LOST                        |        | SHELBY T       |             | V:         | IN-S     | SITU VANE TEST (TSF) |
|        |          | - 6    |                             |        |                |             | CIZE       |          |                      |
|        |          |        | CORE SAMPLE                 | RC:    | ROCK CO        | RE          | _ 512E     |          |                      |
| ELEV.  | DEPTH    | S.P.T. |                             |        | SAMPLES        | 3           |            |          |                      |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL DESCRIPTION        | CON    | NO.<br>TYPE    | REC.<br>(%) | TESTS      | S        | REMARKS              |
|        | 40       | 1500   | grey to green<br>Sundy clay |        | 43             | 66          | SB         | _        |                      |
|        | -        | 8      | Short Eract                 | 111    | 4 15           | 0           | 72         | _        |                      |
|        | 42-      |        | 1                           | =      | _              |             |            | =        |                      |
|        | 43-      |        | 1                           | -      | +              |             |            | _        | _                    |
|        | 44       |        | 1                           | 1 =    | 1              |             |            |          | _                    |
|        | 45       |        | -                           | -      | -              |             |            | _        |                      |
|        | 70       | 4      | 1                           | 1-     |                |             | -          | _        | -                    |
|        | 46_      | 7      | SAME                        | -      | 14             | 65          | SB         | _        | _                    |
|        | 17       |        |                             | =      |                |             |            |          |                      |
|        |          |        | 1                           | 1 =    | _              |             |            | _        |                      |
|        | 48-      |        | 1                           | -      | _              |             |            | _        | _                    |
|        | 49-      |        | 1                           | -      | <del>] -</del> |             |            |          | _                    |
|        | 60       |        | 1                           | 1.2    |                |             | _          | _        |                      |
|        | 0        | 8      | Tan Slightly Silly          | 1/4    | 4              | 12          | 0.0        | _        |                      |
|        | 51-      | 10     | Sand                        | 1/7    | 15             | 50          | SB         | _        | _                    |
|        | 52-      |        | 000,00                      | 1 =    | 1              |             |            |          | _                    |
|        | 50       |        | 1                           | -      | $\dashv$       |             |            | _        |                      |
|        | 55       |        | 1                           | 1 =    |                |             |            |          |                      |
|        | 54-      |        | 1                           | -      | +              |             |            | _        | <b>—</b>             |
|        | 56       | 73.40  | 1                           |        |                |             | _          |          |                      |
|        | 61.      | 965    | Samo                        | 1/7    | 210            | (an         | 9B.        | _        |                      |
|        | 00-      | 5      | Same                        | 11/    | 1              | 60          | 20         | $\equiv$ |                      |
|        | 57-      |        | -                           | -      | +              |             |            | _        | -                    |
|        | 58       |        | 1                           | =      | 1_             |             |            |          |                      |
|        | 90       |        | 1                           | -      | 4              |             |            | _        |                      |
|        | 59       |        | 1                           | =      | _              |             |            |          |                      |
|        | 100      |        | 1                           |        |                |             | l -        |          |                      |

Figure A-9. Soil boring log B-5 (C-2) continued

| _      |          |         |               |           |       |             |             |            |               |         |            |     |
|--------|----------|---------|---------------|-----------|-------|-------------|-------------|------------|---------------|---------|------------|-----|
| PROJE  | CT NO.   |         | NAME          |           |       | 0           | OUNTY       |            |               | DISTR   | RICT       |     |
| LOCAT  | ION      |         |               | TOWNSHIP  | _     | R           | ANGE        |            |               | SECT    | ION        |     |
|        |          |         |               |           |       |             |             |            |               |         |            |     |
| EQUIPN | MENT TYP | PE      |               | RIG I     | NO.   |             |             | BOR        | ING N         | 10. ±   | 15 (c.     | 2)  |
|        |          |         | co            |           |       |             |             |            |               |         |            |     |
| LOGGE  | D BY     | an (8)  | BOR           | ING TYPE: | Α     | UGER, WA    | SHED, PE    | RCUSSION,  | ROTA          | ARY,    |            |     |
| WATER  | TABLE:   | 0 HR.   | 24 HRS        | HRS.      | C     | ASED, UN    | CASED, D    | RILLING MU | D, _          |         |            |     |
|        |          |         |               |           |       |             |             |            |               |         |            |     |
| SAMPL  | E CONDIT | IONS:   | DISTURBED SA  |           |       |             |             |            |               |         |            | )   |
|        | 1        | E       | GOOD          | S         | SB: S | PLIT BA     | RREL        | T:         | TOR           | VANE (T | rsf)       |     |
| 100    | 1        | -8%     | LOST          |           |       | HELBY       |             | V:         | IN-S          | ITU VAN | IE TEST (1 | SF) |
|        |          |         | CORE SAMPLE   |           |       |             |             | SIZE       |               |         |            |     |
|        | ·        |         | OONE ON MILE  |           |       |             |             |            |               |         |            |     |
| ELEV.  | DEPTH    | S.P.T.  | MATERIAL DESC | PIDTION   |       | SAMPLES     | _           | TESTS      | ا ،           |         | REMARKS    |     |
| (FT.)  | (FT.)    | BLOWS   | WATERIAL DESC | KIPTION   | CON.  | NO.<br>TYPE | REC.<br>(%) | 1231       | '             |         | KEMARKS    |     |
|        | 40       | 식       | 0.0           | . /       | 11.   |             |             |            | コ             |         |            | -   |
|        | 6)-      | 5       | Samo          |           | 1/    | 17          | 60          | SB         | $\rightarrow$ | _       |            |     |
|        | 62-      |         |               |           |       |             |             |            | $\Box$        |         |            |     |
| - 1    |          | ├──     | 1             | 1         | _     | 1           |             |            | $\dashv$      |         |            |     |
|        | V3-      |         | 1             |           |       |             |             |            | $\exists$     | _       |            |     |
|        | 64-      | _       | 1             |           | _     | <b>—</b>    |             |            | $\dashv$      | _       |            |     |
|        | 1.5      |         | 1             |           |       |             |             | _          | $\exists$     |         |            |     |
|        |          | 3 5     | Same          | 1         | 17    | 16          | 1           | 00         | $\dashv$      |         |            |     |
|        | 66-      | 5       | Jane          | - 16      | 11    | 18          | 50          | SB         | $\exists$     | _       |            |     |
|        | 107-     |         |               |           | _     | _           |             |            | $\rightarrow$ | _       |            |     |
|        | 100_     |         | 1             |           | =     |             |             |            | $\exists$     |         |            |     |
|        | WO.      | _       | 1             |           | _     |             |             |            | $\dashv$      |         |            |     |
|        | 69-      |         | 1             |           |       | $\vdash$    |             |            | $\exists$     | _       |            |     |
|        | 70       | 5       |               |           | 1.0   | _           |             | -          | $\overline{}$ |         |            |     |
|        | 11_      | 7       | Same          | 1/        | 15    | 19          | 50          | CR         | $\exists$     | _       |            |     |
|        | 71.5     | 8       | 0,000         |           | 1-11  | 1,          | ~           | 00         | -             |         |            |     |
|        | -        |         | i             |           |       | _           |             |            | $\exists$     | _       |            |     |
|        | l —      |         |               |           | _     | <b>—</b>    |             |            | $\rightarrow$ | _       |            |     |
|        |          |         | 1             |           | =     |             |             |            | $\exists$     |         |            |     |
|        |          |         |               |           | _     |             |             |            | $\neg$        |         |            |     |
|        |          |         | †             | -         |       |             |             | -          | $\exists$     |         |            |     |
|        | l —      |         | 1             |           | _     | <b>—</b>    |             |            | $\rightarrow$ | _       |            |     |
|        |          |         | 1             |           | _     | L           |             |            | $\exists$     |         |            |     |
|        |          |         | ]             |           | -     |             |             |            | $\exists$     |         |            |     |
|        | -        |         | 1             |           | _     | $\vdash$    |             |            | $\dashv$      | _       |            |     |
|        | _        |         | 1             |           | =     | _           |             |            | $\exists$     | _       |            |     |
|        |          | <b></b> | 1             |           | _     |             |             |            | $\dashv$      |         |            |     |
|        |          |         | 1             |           |       |             | 1           |            | _             |         |            |     |

Figure A-9. Soil boring log B-5 (C-2) continued

| MIECE | PLORIG | ADEPAR | INER! | Or. | 1104.426 | CHIMIO |
|-------|--------|--------|-------|-----|----------|--------|
|       | FIFI   | D RO   | RIN   | G   | LOG      |        |

|        |          |                |           |              |               |                |            |            |            | OF            |
|--------|----------|----------------|-----------|--------------|---------------|----------------|------------|------------|------------|---------------|
|        |          |                |           | Anger ca     |               |                |            |            |            |               |
|        |          |                |           | TOWN         |               |                |            |            |            | TION          |
|        |          |                |           | •            |               |                |            |            |            | 11 (==>       |
| EQUIPM | MENT TYP | E CINE         | - 75      | COMPLETED    | RIG NO.       | 2600           | 5<br>DDILL | BORI       | NG NO.     | 16 (1-2)      |
|        |          |                |           |              |               |                |            |            |            |               |
| ı      |          |                |           | BORING TYPE: |               | ASED, UN       | CASED, DI  | RILLING MU | D,         |               |
| WATER  | TABLE:   | 0 HR           | 24 HRS    | HRS.         |               |                |            |            |            |               |
| SAMPL  | E CONDIT | IONS:          | DISTURBE  | D SAMPLE TYP | ES: A         | AUGER          | TES        | IS: W.C.:  | WATER CO   | ONTENT (%)    |
|        |          |                | GOOD      |              |               | SPLIT BAR      |            | T:         | TORVANE    |               |
|        |          |                | LOST      |              |               | SHELBYT        |            | V:         | IN-SITU VA | NE TEST (TSF) |
|        |          | П              | CORE SAM  | DI E         |               | ROCKCO         |            | SIZE       |            |               |
|        |          | <del>- 4</del> | U CONE ON |              | 1             |                |            |            |            |               |
| ELEV.  | DEPTH    | S.P.T.         | MATERIAL  | DESCRIPTION  | -             | NO.            |            | TESTS      | .          | REMARKS       |
| (FT.)  | (FT.)    | BLOWS          | 1         |              | CON.          | NO.<br>TYPE    | (%)        | V.         |            | is to         |
| , ,    | 10       | 1 1            | Dua D     | 014/10       | , 7           |                | 1          | 1 1        |            | 0 0 7         |
| 1      | 7        | 1 1            | Ing P     | own          | $H \subseteq$ |                |            | 11         | =          |               |
|        | 2        | 2              | Davk Bo   | nun Sand     | 1/1           |                | 20         | 0.5        |            |               |
|        | 3-       | 3              | por D Ore | pang Jang    | 1//           | -1             | 20         | SB         | +          |               |
|        | 4 -      |                | tanto     | Brown        | 1/2           | 1-             | 12         | SB         | _          |               |
|        | 5        | 3              | 5         | and          | 1/1           | 2              | 30         | SB         | _          |               |
|        | ,        | 2              | 00        | mal          | 1/            | 3              | 40         | SB         | -          |               |
|        | 6        | 3              | So        |              | 1/1/          | 7              | 10         | 0.52       | _          |               |
|        | 7-       | 2              | Brown     | Sand         | · 1/1         | -4             | 50         | SB         | $\pm$      |               |
|        | -8-      | 200            |           |              | 1 //2         | <del>-</del> - |            |            | _          |               |
|        | 9-       | 3              | JULY DI   | own Spine    | 1 1/17        | 15             | 50         | SB         | <b>—</b>   |               |
|        | In       | 2              |           |              | 11/1          | - 35-          |            | _          |            |               |
|        | 10       | 2              | San       | e i          | 1//           | 6              | 50         |            | $\dashv$   |               |
|        | 11       |                |           |              | =             | 17             |            | 100        | $\equiv$   |               |
|        | 12-      |                |           |              | =             | - 1            |            |            | $\pm$      |               |
| 18.    | 13-      |                |           |              | -             | +              |            |            | 133        |               |
| 3.0    | 14       |                |           |              | =             | 1_             |            | 100        | 7          |               |
|        | 12       |                |           |              |               |                |            |            |            | 58            |
|        | 1        | 2              | Brown     | to Park      | 1//           | 7              | 203        | SB         | $\dashv$   |               |
|        | 16-      | 2              | Brown     | Sound        | 1/7           | /              | 20         | 20         | 丁          | -             |
|        | 17-      |                | ~         |              | 1 =           | _              | l .        |            |            | 1             |
|        | 18-      |                |           |              |               | +              |            |            | +          | The case      |
|        | 19-      |                |           |              | =             | 1_             |            |            | 4          |               |
|        | 26       |                |           |              |               |                |            | _          | _          | 1             |
| ı      |          |                |           |              |               | ,              | 1          | _          |            |               |

**Figure A-9.** Soil boring log B-6 (T-2)

| PROJE  | CT NO    |             | NAME                    |              | c         | OUNTY     | _          |      | DISTRICT             |
|--------|----------|-------------|-------------------------|--------------|-----------|-----------|------------|------|----------------------|
| LOCATI | ON       |             |                         | TOWNSHIP _   | R         | ANGE .    |            |      | SECTION              |
| ROAD   | NUMBER   |             |                         |              |           | SURFA     | CE ELEVA   | TION |                      |
| EQUIPM | MENT TYP | E           | Dayn                    | RIG NO.      |           |           | BOF        | RING | NO. # 6(T-2)         |
|        |          |             | COMPL                   | ETED         |           | _ DRILL   | ED BY      |      |                      |
|        |          |             | BORING                  |              |           |           |            |      |                      |
|        |          |             |                         |              | CASED, UN | CASED, DI | RILLING MU | D,   |                      |
| WATER  | TABLE:   | 0 HR        | 24 HRS HR               | . S          |           |           |            |      |                      |
| SAMPL  | E CONDIT | IONS:       | DISTURBED SAMPI         | E TYPES: A   | AUGER     | TES.      | TS: W.C.:  | WAT  | TER CONTENT (%)      |
| l .    |          |             | GOOD                    | SB:          | SPLIT BAI | RREL      | T:         | TOR  | RVANE (TSF)          |
| '      |          |             | LOST                    |              | SHELBY    |           | V:         | IN-S | SITU VANE TEST (TSF) |
| 1      |          | n           |                         |              |           |           | SIZE       |      |                      |
|        |          | Ц           | CORE SAMPLE             | RC:          | ROCKCO    | KE        | SIZE       | _    |                      |
| ELEV.  | DEPTH    | S.P.T.      |                         |              | SAMPLE    | S         |            |      |                      |
| (FT.)  | (FT.)    | BLOWS       | MATERIAL DESCRIP        | TION         | NO.       | REC.      | TEST       | S    | REMARKS              |
|        | 26       | 2           | 0 0!                    |              | TYPE      | (%)       |            | _    |                      |
|        | 21       | 3           | Brown Slig<br>Silty San | 4 1/1        | 18        | 40        | SB         |      | _                    |
|        |          | _5_         | Sind Sour               | a 1/         | 11        | , ,       |            | -    | ****                 |
|        | 22       |             |                         |              |           | 1         |            |      |                      |
| 1      | J.3      | -           |                         | -            | _         |           | 1          | _    | _                    |
| l      | 24       |             |                         | 1.5          |           | 1         |            | =    | _                    |
|        | - 1      |             |                         | -            |           | 1         |            | _    |                      |
| -      | 20       | 4           |                         | 77           | 7         |           |            |      |                      |
| 1      | 26-      | 6           | Same                    | 1/7          | 79        | 50        | SB         | _    | _                    |
| -      |          | ->-         | 7 - 111 00              |              | //        |           |            | _    |                      |
| 1      | 27       |             |                         | 1 7          |           | 1         |            |      | Γ                    |
| 1      | 28       | $\vdash$    |                         | -            | +         |           |            |      | <del>-</del>         |
| 1      | 29-      |             |                         | -            | _         |           |            |      | <u> </u>             |
| 1      | 20       | <del></del> |                         |              |           |           | _          | _    | <u> </u>             |
|        | -9-      | 5           | Slightly Silty          | Tan 1/-      | // 1-     | 1/2       | CD         |      |                      |
|        | 31-      | 8           | Sand                    | 1//-         | 110       | 70        | 0,13       | _    | <del>-</del>         |
|        | 21-      |             |                         |              |           |           |            |      | _                    |
| 1      | 20       | $\vdash$    |                         |              |           | 1         | 197        | _    | 1. 7                 |
| 1      | 22       |             |                         |              |           | -         |            | _    |                      |
| 1      | 34       | -           |                         | -            | +         | 1         |            | _    | <del> -</del>        |
|        | 24       |             |                         |              |           |           |            |      |                      |
|        | 20       | 4           | Light Brown             | Stightly //7 | / W       | 50        | SB         | _    | 1                    |
|        | 360      | 6           | Silty Sand              | 1//          | 7         | 50        | OD         | =    |                      |
|        | 37       |             |                         | ļ -          | +         |           |            | _    | _                    |
|        | 00       |             |                         |              |           |           |            | =    | _ ,                  |
|        | 50       |             |                         | :            |           |           |            | _    | 1                    |
| 1      | 34       |             |                         | -            | _         |           |            | _    | _                    |
|        | 116      |             |                         |              | 7         |           | - ا        | _    | - 0                  |

**Figure A-9.** Soil boring log B-6 (T-2) *continued* 

|        |          |        |          |           |                                    |       |               |             |            |               | -          | OF       |
|--------|----------|--------|----------|-----------|------------------------------------|-------|---------------|-------------|------------|---------------|------------|----------|
| PROJE  | CT NO.   |        | NAME.    | Auger     | cost                               | pile  | c             | OUNTY       |            |               | DISTRICT   |          |
| LOCATI | ON       |        |          | )         | TOWNSHI                            | P     | R             | ANGE _      |            |               | SECTION    |          |
| ROAD N | NUMBER   |        | 60       | 1 ^       | 1                                  |       |               | SURFA       | CE ELEVA   | TION          |            |          |
|        |          | E      | ~ / U    | MM        | V_RIC                              | NO.   |               |             | BOR        | ING N         | 10. 4/6    | 7-2)     |
| DATE S | TARTED   |        | ()       | COMPL     | ETED _                             |       |               | _ DRILL     | ED BY      |               |            |          |
| LOGGE  | D BY     |        |          |           |                                    |       |               |             |            |               | RY,        |          |
| WATER  | TABLE:   | 0 HR   | 24 HRS   | HR        | s                                  | _ c   | ASED, UNC     | CASED, DR   | RILLING MU | D             |            |          |
|        | E CONDIT |        |          |           |                                    |       | LICER         | TEST        | S: wc      | WAT           | ER CONTEN  | T (%)    |
|        |          | 6      | 7        | :U        |                                    | A /   | OGER          | 2051        | T:         | TOR           | VANE (TSF) | (70)     |
|        |          |        | GOOD     |           |                                    |       |               |             | V:         | IN-SI         | TU VANE TE | ST (TSF) |
|        |          |        | LOST     |           |                                    |       | HELBY T       |             |            |               |            |          |
|        |          | Ц      | CORE SAM | MPLE      |                                    | RC: F | ROCKCO        | RE          | _ SIZE     |               |            | 1        |
| ELEV.  | DEPTH    | S.P.T. |          |           |                                    |       | SAMPLES       | 3           |            |               |            |          |
| (FT.)  | (FT.)    | BLOWS  | MATERIAL | DESCRIP   | TION                               | CON.  | NO.<br>TYPE   | REC.<br>(%) | TESTS      | 5             | REMA       | RKS      |
|        | 40       | 7      | Cal      | v a       |                                    | 1//   | 12            | 10          | 92         | $\exists$     |            |          |
|        | 41-      | 7      | Sail     | ILL       |                                    | 1/11  | 16            | 20          | SB         | $\exists$     |            |          |
|        | 42-      |        |          |           |                                    | _     | -             |             |            | $\rightarrow$ | _          |          |
|        | 43       |        |          |           |                                    |       | _             |             |            | =             | _          |          |
|        |          |        |          |           |                                    | _     | ł             |             |            | -             |            |          |
|        | 44       |        |          |           |                                    | _     |               | ll          |            | $\exists$     |            |          |
|        | 45       | 5      |          | 17 1 2 10 |                                    | 77.   |               |             |            |               |            |          |
|        | 46-      | 57     | grey to  | green     | \                                  | I/I   | 13            | (00)        | SB         | =             | _          |          |
| ****   |          | 88     |          | ay        | and the latest several selection ( | 111   | 1/            | 00          |            | -             |            |          |
|        | 47-      |        |          |           |                                    |       |               |             |            | =             | 100 p      |          |
|        | 48-      |        |          |           |                                    | —     | $\vdash$      |             | -          | $\rightarrow$ | _          |          |
|        | 49_      |        |          |           |                                    | _     | <u> </u>      |             |            | =             | _          |          |
|        | 50       | _      |          |           |                                    | _     | -             |             |            | $\dashv$      |            |          |
|        | 5        | 5      |          |           |                                    | 774   | 7.1           | , ,         | 00         | $\exists$     |            |          |
|        | 51-      | 000    | Sar      | ne        |                                    | 1/    | 14            | 60          | SR         | $\rightarrow$ | _          |          |
|        | 52-      |        |          |           |                                    | -/    |               |             |            | $\exists$     |            |          |
|        |          |        |          |           |                                    | _     | 1             |             |            | $^{\circ}$    |            |          |
|        | 53-      |        |          |           |                                    | =     |               |             |            | $\exists$     | _          |          |
|        | 54-      |        |          |           |                                    | —     | <del> -</del> |             |            | $\rightarrow$ | _          |          |
|        | 56       |        |          |           |                                    |       | 1             |             |            | $\exists$     |            |          |
|        |          | 9      | Slightly | Silt to   | an Sand                            | 11/1  | 15            | ED          | SB         | $\dashv$      |            |          |
|        | 56       | Ü      | July     | 2113      |                                    |       | 15            | 20          | 20         | $\equiv$      |            | -        |
|        | 57-      |        |          |           |                                    | -     | -             |             |            | $\dashv$      | _          | 91       |
|        | ca       |        |          |           |                                    |       | 1_            |             |            | $\exists$     | _          |          |
|        | 58       |        |          |           |                                    | _     | -             |             |            | $\dashv$      |            |          |
|        | 59       |        |          |           |                                    | _     |               | ,           |            | $\exists$     | _          |          |
|        | (P)      |        |          |           |                                    | _     | -             |             | -          |               |            |          |

**Figure A-9.** Soil boring log B-6 (T-2) *continued* 

| ¥ .      | k         | *      | :         | STATE OF FLORIDA DEPAR<br>FIELD BO |       |               | TION     | 49         | SHI     | EET <u>4</u> | FORM 675-020-12<br>MATERIALS<br>OF |
|----------|-----------|--------|-----------|------------------------------------|-------|---------------|----------|------------|---------|--------------|------------------------------------|
| PROJE    | CT NO.    |        | NAME.     |                                    |       |               | OUNTY    |            |         | DISTRICT     |                                    |
| LOCATION |           |        | TOWNSH    | IP                                 | R     | ANGE          |          |            | SECTION |              |                                    |
| ROAD     | NUMBER    |        |           | V///C                              |       |               |          | CE ELEVA   |         |              |                                    |
|          |           | E      |           |                                    |       |               |          |            |         |              | (T-Z)                              |
| DATE S   | TARTED    | - 4    |           | COMPLETED                          | _     |               | _ DRILI  | LED BY     | 1/      |              |                                    |
| LOGGE    | D BY      |        | 100       | BORING TYPE:                       |       |               |          |            |         |              |                                    |
| WATER    | TABLE:    | OHR.   | 24 HRS.   | HRS.                               | С     | ASED, UN      | CASED, D | RILLING MU | D,      |              |                                    |
|          | E CONDIT  | 1 1    | DISTURBED | SAMPLE TYPES:                      | SB: S | SPLIT BAI     | RREL     | T:<br>V:   | TORV    | ANE (TSF)    |                                    |
| ELEV.    | DEPTH     | S.P.T. |           | ,                                  |       | SAMPLE        | S        |            |         |              |                                    |
| (FT.)    | (FT.)     | BLOWS  | MATERIAL  | DESCRIPTION                        | CON.  | NO.<br>TYPE   | REC.     | TESTS      | 3       | REM          | ARKS                               |
| ***      | 999999777 | 5558   | Slightlys |                                    |       | +7<br>-<br>+8 | 50       | SB.        |         |              |                                    |
|          | -         |        |           |                                    | =     |               |          | -          |         |              |                                    |

**Figure A-9.** Soil boring log B-6 (T-2) *continued* 

# **APPENDIX B**

# CALIBRATION REPORTS - GEOKON SISTER BAR STRAIN GAGES



Model Number: 4911-4 Date of Calibration: September 28, 2016

This calibration has been verified/validated as of 10/07/2016

Cable Length: 80 feet

Prestress: 35,000 psi Regression Zero: 6980

\_\_\_\_\_

Temperature: 22.7 °C Technician:

Calibration Instruction: CI-VW Rebar

Serial Number: 1631527

| Applied Load |                       | Linearity |         |        |             |
|--------------|-----------------------|-----------|---------|--------|-------------|
| (pounds)     | Cycle #1 Cycle #2 Avo |           | Average | Change | % Max. Load |
| 100          | 7037                  | 7038      | 7038    |        |             |
| 1500         | 7693                  | 7695      | 7694    | 656    | -0.21       |
| 3000         | 8411                  | 8410      | 8411    | 717    | -0.33       |
| 4500         | 9143                  | 9142      | 9143    | 732    | 0.09        |
| 6000         | 9865                  | 9864      | 9865    | 722    | 0.16        |
| 100          | 7038                  | 7037      | 7038    |        |             |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.350 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-1. Sister bar calibration report: S/N 1631527



Model Number: 4911-4 Date of Calibration: September 28, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1631528 Cable Length: 80 feet

Prestress: 35,000 psi Regression Zero: 6995

Temperature: 22.7 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |                     | Linearity |         |                |       |
|--------------|---------------------|-----------|---------|----------------|-------|
| (pounds)     | Cycle #1 Cycle #2 A |           | Average | Average Change |       |
| 100          | 7051                | 7049      | 7050    |                |       |
| 1500         | 7710                | 7714      | 7712    | 662            | -0.25 |
| 3000         | 8440                | 8438      | 8439    | 727            | -0.15 |
| 4500         | 9166                | 9166      | 9166    | 727            | -0.05 |
| 6000         | 9896                | 9894      | 9895    | 729            | 0.12  |
| 100          | 7049                | 7049      | 7049    |                |       |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: \_\_\_\_0.349 \_\_\_microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-2. Sister bar calibration report: S/N 1631528



Model Number: 4911-4 Date of Calibration: September 28, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1631529 Cable Length: 70 feet

Prestress: 35,000 psi Regression Zero: 6964

Temperature: 22.7 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Linearity |         |        |             |
|--------------|----------|-----------|---------|--------|-------------|
| (pounds)     | Cycle #1 | Cycle #2  | Average | Change | % Max. Load |
| 100          | 7024     | 7024      | 7024    |        |             |
| 1500         | 7680     | 7678      | 7679    | 655    | -0.38       |
| 3000         | 8409     | 8409      | 8409    | 730    | -0.25       |
| 4500         | 9143     | 9142      | 9143    | 734    | 0.00        |
| 6000         | 9876     | 9872      | 9874    | 731    | 0.18        |
| 100          | 7024     | 7023      | 7024    |        |             |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-3. Sister bar calibration report: S/N 1631529



Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Cable Length: 70 feet

Prestress: 35,000 psi Regression Zero: 6915

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

Serial Number: 1632090

| Applied Load |          | Linearity |         |        |             |
|--------------|----------|-----------|---------|--------|-------------|
| (pounds)     | Cycle #1 | Cycle #2  | Average | Change | % Max. Load |
| 100          | 6970     | 6969      | 6970    |        |             |
| 1500         | 7625     | 7623      | 7624    | 654    | -0.21       |
| 3000         | 8340     | 8336      | 8338    | 714    | -0.25       |
| 4500         | 9064     | 9059      | 9062    | 724    | 0.05        |
| 6000         | 9780     | 9776      | 9778    | 716    | 0.10        |
| 100          | 6969     | 6966      | 6968    |        |             |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.352 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-4. Sister bar calibration report: S/N 1632090



Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632091 Cable Length: 60 feet

Prestress: 35,000 psi Regression Zero: 6818

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Linearity |         |        |             |
|--------------|----------|-----------|---------|--------|-------------|
| (pounds)     | Cycle #1 | Cycle #2  | Average | Change | % Max. Load |
| 100          | 6876     | 6873      | 6875    |        |             |
| 1500         | 7536     | 7535      | 7536    | 661    | -0.35       |
| 3000         | 8271     | 8269      | 8270    | 734    | -0.11       |
| 4500         | 9005     | 9002      | 9004    | 734    | 0.09        |
| 6000         | 9730     | 9729      | 9730    | 726    | 0.04        |
| 100          | 6874     | 6871      | 6873    |        |             |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-5. Sister bar calibration report: S/N 1632091



Date of Calibration: October 03, 2016 Model Number: 4911-4

This calibration has been verified/validated as of 10/07/2016 Serial Number: 1632092

Cable Length: 60 feet

Prestress: 35,000 Regression Zero: 6942

Technician: 21.9 Temperature:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |         |        |             |  |  |  |  |  |  |  |  |
|--------------|----------|----------|---------|--------|-------------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Average | Change | % Max. Load |  |  |  |  |  |  |  |  |
| 100          | 7009     | 7002     | 7006    |        |             |  |  |  |  |  |  |  |  |
| 1500         | 7674     | 7668     | 7671    | 665    | -0.43       |  |  |  |  |  |  |  |  |
| 3000         | 8417     | 8413     | 8415    | 744    | -0.36       |  |  |  |  |  |  |  |  |
| 4500         | 9172     | 9166     | 9169    | 754    | 0.05        |  |  |  |  |  |  |  |  |
| 6000         | 9920     | 9911     | 9916    | 747    | 0.20        |  |  |  |  |  |  |  |  |
| 100          | 7003     | 6998     | 7001    |        |             |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.343 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-6. Sister bar calibration report: S/N 1632092



Model Number: 4911-4 Date of Calibration: October 03, 2016
This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632093 Cable Length: 50 feet

Prestress: 35,000 psi Regression Zero: 6564

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |        |             |       |  |  |  |  |  |  |  |  |
|--------------|----------|----------|--------|-------------|-------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change | % Max. Load |       |  |  |  |  |  |  |  |  |
| 100          | 6631     | 6627     | 6629   |             |       |  |  |  |  |  |  |  |  |
| 1500         | 7279     | 7272     | 7276   | 647         | -0.48 |  |  |  |  |  |  |  |  |
| 3000         | 8002     | 7999     | 8001   | 725         | -0.50 |  |  |  |  |  |  |  |  |
| 4500         | 8738     | 8747     | 8743   | 742         | 0.07  |  |  |  |  |  |  |  |  |
| 6000         | 9476     | 9471     | 9474   | 731         | 0.26  |  |  |  |  |  |  |  |  |
| 100          | 6627     | 6624     | 6626   |             |       |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: \_\_\_\_0.348 \_\_microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-7. Sister bar calibration report: S/N 1632093



Date of Calibration: October 03, 2016 Model Number: 4911-4

This calibration has been verified/validated as of 10/07/2016 Serial Number: 1632094

Cable Length: 50 feet

Prestress: 35,000 Regression Zero: 6879

Technician: 21.9 Temperature:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |        |             |       |  |  |  |  |  |  |  |  |
|--------------|----------|----------|--------|-------------|-------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change | % Max. Load |       |  |  |  |  |  |  |  |  |
| 100          | 6934     | 6934     | 6934   |             |       |  |  |  |  |  |  |  |  |
| 1500         | 7595     | 7596     | 7596   | 662         | -0.32 |  |  |  |  |  |  |  |  |
| 3000         | 8333     | 8328     | 8331   | 735         | 0.00  |  |  |  |  |  |  |  |  |
| 4500         | 9060     | 9057     | 9059   | 728         | 0.08  |  |  |  |  |  |  |  |  |
| 6000         | 9784     | 9781     | 9783   | 724         | 0.02  |  |  |  |  |  |  |  |  |
| 100          | 6934     | 6935     | 6935   |             |       |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.348 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-8. Sister bar calibration report: S/N 1632094



Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632095 Cable Length: 40 feet

Prestress: 35,000 psi Regression Zero: 6710

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |         |        |             |  |  |  |  |  |  |  |  |
|--------------|----------|----------|---------|--------|-------------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Average | Change | % Max. Load |  |  |  |  |  |  |  |  |
| 100          | 6770     | 6765     | 6768    |        |             |  |  |  |  |  |  |  |  |
| 1500         | 7437     | 7430     | 7434    | 666    | -0.30       |  |  |  |  |  |  |  |  |
| 3000         | 8170     | 8168     | 8169    | 735    | -0.18       |  |  |  |  |  |  |  |  |
| 4500         | 8913     | 8907     | 8910    | 741    | 0.12        |  |  |  |  |  |  |  |  |
| 6000         | 9639     | 9643     | 9641    | 731    | 0.08        |  |  |  |  |  |  |  |  |
| 100          | 6765     | 6760     | 6763    |        |             |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: \_\_\_\_0.346 \_\_microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-9. Sister bar calibration report: S/N 1632095

Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632096 Cable Length: 40 feet

Prestress: 35,000 psi Regression Zero: 6755

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |              |             |       |  |  |  |  |  |  |  |  |
|--------------|----------|----------|--------------|-------------|-------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change       | % Max. Load |       |  |  |  |  |  |  |  |  |
| 100          | 6815     | 6813     | 6814         |             |       |  |  |  |  |  |  |  |  |
| 1500         | 7473     | 7474     | 7474<br>8206 | 660         | -0.35 |  |  |  |  |  |  |  |  |
| 3000         | 8203     | 8208     |              | 732         | -0.23 |  |  |  |  |  |  |  |  |
| 4500         | 8944     | 8945     | 8945         | 739         | 0.12  |  |  |  |  |  |  |  |  |
| 6000         | 9673     | 9672     | 9673         | 728         | 0.10  |  |  |  |  |  |  |  |  |
| 100          | 6813     | 6814     | 6814         |             |       |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.347 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-10. Sister bar calibration report: S/N 1632096

Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632097 Cable Length: 30 feet

Prestress: 35,000 psi Regression Zero: 6951

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |        |             |       |  |  |  |  |  |  |  |  |
|--------------|----------|----------|--------|-------------|-------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change | % Max. Load |       |  |  |  |  |  |  |  |  |
| 100          | 7011     | 7009     | 7010   |             |       |  |  |  |  |  |  |  |  |
| 1500         | 7657     | 7655     | 7656   | 646         | -0.49 |  |  |  |  |  |  |  |  |
| 3000         | 8387     | 8386     | 8387   | 731         | -0.08 |  |  |  |  |  |  |  |  |
| 4500         | 9110     | 9111     | 9111   | 724         | 0.09  |  |  |  |  |  |  |  |  |
| 6000         | 9828     | 9830     | 9829   | 718         | 0.08  |  |  |  |  |  |  |  |  |
| 100          | 7009     | 7005     | 7007   |             |       |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.351 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-11. Sister bar calibration report: S/N 1632097

Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632098 Cable Length: 30 feet

Prestress: 35,000 psi Regression Zero: 6734

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readi    | ngs    |             | Linearity |
|--------------|----------|----------|--------|-------------|-----------|
| (pounds)     | Cycle #1 | Cycle #2 | Change | % Max. Load |           |
| 100          | 6792     | 6788     | 6790   |             |           |
| 1500         | 7458     | 7455     | 7457   | 667         | -0.22     |
| 3000         | 8188     | 8184     | 8186   | 729         | -0.19     |
| 4500         | 8924     | 8922     | 8923   | 737         | 0.09      |
| 6000         | 9652     | 9652     | 9652   | 729         | 0.09      |
| 100          | 6788     | 6789     | 6789   |             |           |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.347 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-12. Sister bar calibration report: S/N 1632098

Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632099 Cable Length: 20 feet

Prestress: 35,000 psi Regression Zero: 6818

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readings |              |             |       |  |  |  |  |  |  |  |  |
|--------------|----------|----------|--------------|-------------|-------|--|--|--|--|--|--|--|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change       | % Max. Load |       |  |  |  |  |  |  |  |  |
| 100          | 6870     | 6868     | 6869         |             |       |  |  |  |  |  |  |  |  |
| 1500         | 7528     | 7528     | 7528<br>8245 | 659         | -0.16 |  |  |  |  |  |  |  |  |
| 3000         | 8245     | 8244     |              | 717         | -0.09 |  |  |  |  |  |  |  |  |
| 4500         | 8966     | 8963     | 8965         | 720         | 0.10  |  |  |  |  |  |  |  |  |
| 6000         | 9675     | 9676     | 9676         | 711         | -0.02 |  |  |  |  |  |  |  |  |
| 100          | 6868     | 6866     | 6867         |             |       |  |  |  |  |  |  |  |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: \_\_\_\_0.352 \_\_\_microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-13. Sister bar calibration report: S/N 1632099



Model Number: 4911-4 Date of Calibration: October 03, 2016

This calibration has been verified/validated as of 10/07/2016

Serial Number: 1632100 Cable Length: 20 feet

Prestress: 35,000 psi Regression Zero: 6771

Temperature: 21.9 °C Technician:

Calibration Instruction: CI-VW Rebar

| Applied Load |          | Readi    | ngs    |             | Linearity |  |
|--------------|----------|----------|--------|-------------|-----------|--|
| (pounds)     | Cycle #1 | Cycle #2 | Change | % Max. Load |           |  |
| 100          | 6833     | 6829     | 6831   |             |           |  |
| 1500         | 7482     | 7481     | 7482   | 651         | -0.44     |  |
| 3000         | 8214     | 8209     | 8212   | 730         | -0.21     |  |
| 4500         | 8943     | 8941     | 8942   | 730         | 0.04      |  |
| 6000         | 9670     | 9667     | 9669   | 727         | 0.15      |  |
| 100          | 6829     | 6826     | 6828   |             |           |  |

For conversion factor, load to strain, refer to table C-2 of the Installation Manual

Gage Factor: 0.349 microstrain/ digit (GK-401 Pos. "B")

Calculated Strain = Gage Factor(Current Reading - Zero Reading)

Note: The above calibration uses the linear regression method.

Users are advised to establish their own zero conditions.

Linearity: ((Calculated Load - Applied Load)/Max. Applied Load) X 100 percent

The above instrument was found to be in tolerance in all operating ranges.

The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure B-14. Sister bar calibration report: S/N 1632100

# **APPENDIX C**

MATERIAL SPECIFICATION INTRUSION-AID® DSC
CONCENTRATE NORMAL RANGE
WATER REDUCING GROUT
FLUIDIFIER



# Intrusion-Aid®

# **DSC Concentrate**

# Normal Range Water Reducing Grout Fluidifier

# Description

Intrusion-Aid® DSC Concentrate is a user-friendly alternative to Intrusion-Aid® DSC. One 7 pound water-soluble bag of Intrusion-Aid DSC Concentrate is as effective as one 22.5 pound paper bag of Intrusion-Aid DSC. Therefore, each pail of Intrusion-Aid DSC Concentrate contains the equivalent of 4 paper bags of Intrusion-Aid DSC.

Intrusion-Aid® DSC Concentrate is a Normal Range Water Reducing Grout Fluidifier designed for use in augered cast-in-place piling grouts. Intrusion-Aid DSC Concentrate minimizes bleeding and setting shrinkage while maintaining a fluid, yet cohesive grout.

## **Applications**

- Augered Cast-in-Place Piles
- · Conventional and Fabric Form Pile Jackets
- · Erosion Control Mats and Fabric Forms
- Virtually Any Grouting Application

#### Features and Benefits

- · Highly Fluid Grout
- Low Dosage Rate
- · Eliminates Setting Shrinkage
- Virtually Eliminates Bleeding and Segregation

#### **Applicable Standards**

Intrusion-Aid® DSC Concentrate meets U. S. Corps of Engineers Specification, CRD C-619, and ASTM Standard Specification for Grout Fluidifier, ASTM C-937.

## Compatibility

Intrusion-Aid® DSC Concentrate is compatible with most commercially available concrete admixtures. When used at the maximum dosage rate, no other admixture should be needed. The only exception could be extreme hot temperatures in which set time tests should be performed.

## Performance Data

| Water Retentivity (ASTM C-941) | passes |
|--------------------------------|--------|
| Bleeding (ASTM C-940)          | 0 %    |
| Expansion (ASTM C-940)         | 3-4%   |
| Time of Set (ASTM C-953)       | Normal |

## Packaging / Dosage

Each pail of Intrusion-Aid DSC Concentrate contains four, seven pound, water-soluble bags. When used as a standalone admixture, Intrusion-Aid DSC Concentrate can be added in the range of 1.55 - 1.75 lbs per cubic yard or two water-soluble bags per eight or nine yard load of a typical augercast grout. Allow to mix for a minimum of three to five minutes (70 revolutions). Dosage rates may vary when used with other admixtures.

#### Storage

Intrusion-Aid® DSC Concentrate should be stored in a dry location protected from moisture and contamination. Intrusion-Aid Grout Fluidifiers are not subject to damage from freezing temperatures.

#### **Precautions**

Product is classified as a nuisance dust. Since all of the powder is contained in a water soluble bag, dust should not be an issue. However, in the event of exposure to dust, follow the precautions for nuisance dust and those detailed on the MSDS.

#### Disclaimer and Limitation of Warranty

The information and recommendations contained in this publication are reliable and reflect the results of Specrete-IP's most current developments and tests. However, the appropriateness and suitability of specific uses and applications of any Specrete product, must be determined and verified by the user. Further, the successful application of any Specrete product, is critically dependent on user's following in all respects and details the recommended and industry standard procedures in preparation and application. Thus, as a consequence of the numerous factors on which successful application depends, Specrete-IP makes no warranties of any kind, express or implied, including those of merchantability and fitness for purposes and all claims including without limitation those sounding in breach of warranty, negligence, strict or product liability are limited to the purchase price of the material.

**Specrete-IP Incorporated •** 10703 Quebec Avenue • Cleveland, Ohio 44106 Telephone (216) 721-2050 • (800) 245-3407 • Fax (216) 421-0032

# **APPENDIX D**

# DRILLING EQUIPMENT DETAILS - GEAR BOX AND POWER UNIT



Figure D-1. Photographs of drilling platform components: (a) gear box, (b) hydraulic power unit, and (c) grout pump

**Table D-1.** Specifications for drilling platform components: (a) gear box, (b) hydraulic power unit, and (c) grout pump

# (a) General description of unit – gear box

- Hydraulically operated top head drive
- Travels up and down the leads
- Torques range from about 15,000 ft-lbs to 90,000 ft-lbs (20 to 122 kN-m)
- Weighs 2,000 to 13,000 lbs (905 to 5900 kg) additional downward force
- Rotational speed ranges from 30 to 60 rpm

Equipment No. Equipment Date: 03 October 2007 by Berkel and Co., Bonner Springs, KS Dimensions: 60 in (length) x 42 in (width) x 8 ft 10 in (height) Weight: 13,600 lb Motor Rotary Power (x2 unit) Output: Torque = 74,300 ft-lb

Speed = 44 rpm(before reduction)

Shaft: 5 in (ID) x 7 in (OD) x 55 in (OA length)

# (b) General description of unit – hydraulic power unit

- Provides hydraulic power to turn the gearbox and auger
- Horsepower ratings range from about 200 hp to 850 hp

Equipment No. 63-C18 Equipment Date: 10 October 2007 by Berkel and Co., Bonner Springs, KS Dimensions: 17 ft (length) x 50 in (width) x 7 ft 9 in (height) Engine: Caterpillar C18 Horsepower: 700 hp @ 2100 rpm

# (c) General description of unit – grout pump

- Hydraulically operated, positive displacement piston-ball valve pump
- Pump pressures typically around 350 psi at pump outlet
- Stroke vols. typically range from about 0.4 to 1.0 cubic feet per stroke (up to 1.7)
- Grout hoses typically 2 to 3 inch diameter
- Can pump grout several hundred feet
- Grout typically delivered by ready mix trucks

# **APPENDIX E**

INSTALLATION MEASUREMENTS - DATA FROM AUTOMATED MONITORING EQUIPMENT



# Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

#### Data for Pile No: C1

Date: 10/27/2016 Pile Length: 60.6 ft
Start Time: 9:44:45 AM Pile Diameter: 18 in
End Time: 10:00:26 AM Theoretical Volume: 107.1 ft³

Total Time: 00:15:41

Drilling Time: 00:06:58 Volume of Grout: 141.9 ft<sup>3</sup>
Grouting Time: 00:04:00 Grout Factor: 133 %



Figure E-1. Installation record for test pile C-1 using AME



#### Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

# Data for Pile No: C2

Date: 10/27/2016 Pile Length: 60.6 ft
Start Time: 12:06:10 PM Pile Diameter: 24 in
End Time: 12:20:53 PM Theoretical Volume: 190.4 ft³

Total Time: 00:14:43

Drilling Time: 00:06:33 Volume of Grout: 272.4 ft³
Grouting Time: 00:07:23 Grout Factor: 143 %



Figure E-2. Installation record for test pile C-2 using AME



#### Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

#### Data for Pile No: T1

Date: 10/27/2016 Pile Length: 60.6 ft
Start Time: 10:19:40 AM Pile Diameter: 18 in
End Time: 10:33:29 AM Theoretical Volume: 107.1 ft³

Total Time: 00:13:49

Drilling Time: 00:08:30 Volume of Grout: 150.7 ft<sup>3</sup>
Grouting Time: 00:04:08 Grout Factor: 141 %



Figure E-3. Installation record for test pile T-1 using AME



# Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

# Data for Pile No: T2

Date: 10/27/2016 Pile Length: 60.6 ft
Start Time: 12:34:56 PM Pile Diameter: 24 in
End Time: 12:52:44 PM Theoretical Volume: 190.5 ft³

Total Time: 00:17:48

Drilling Time: 00:08:15 Volume of Grout: 257.3 ft<sup>3</sup>
Grouting Time: 00:06:59 Grout Factor: 135 %



Figure E-4. Installation record for test pile T-2 using AME



# Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

#### Data for Pile No: 11

Date: 10/27/2016 Pile Length: 40.6 ft
Start Time: 9:20:44 AM Pile Diameter: 18 in
End Time: 9:33:50 AM Theoretical Volume: 71.7 ft3

Total Time: 00:13:06

Drilling Time: 00:05:53 Volume of Grout: 95.6 ft³
Grouting Time: 00:03:04 Grout Factor: 133 %



Figure E-5. Installation record for test pile L-1 using AME



#### Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

# Data for Pile No: L2

Date: 10/27/2016 Pile Length: 40.6 ft
Start Time: 11:39:31 AM Pile Diameter: 24 in
End Time: 11:50:52 AM Theoretical Volume: 127.5 ft³

Total Time: 00:11:21

Drilling Time: 00:05:32 Volume of Grout: 178.3 ft3
Grouting Time: 00:04:50 Grout Factor: 140 %



Figure E-6. Installation record for test pile L-2 using AME



#### Job Site Data:

Project: 2016 Research Project

Location: Okahumpka FL

Machine No.: APG

Client: DFI ACIP Pile Committee

Project No.: 86 166

#### Data for Pile No: e1

Date: 10/27/2016 Pile Length: 40.6 ft
Start Time: 9:00:14 AM Pile Diameter: 18 in
End Time: 9:08:45 AM Theoretical Volume: 71.7 ft<sup>9</sup>

Total Time: 00:08:31

Drilling Time: 00:04:25 Volume of Grout: 109.2 ft<sup>3</sup>
Grouting Time: 00:03:26 Grout Factor: 152 %



Figure E-7. Installation record for test pile E-1 using AME

# **APPENDIX F**

# INSTALLATION MEASUREMENTS - DATA FROM MANUAL RECORDINGS



Figure F-1. Manual installation record for test pile C-1



Figure F-2. Manual installation record for test pile C-2



Figure F-3. Manual installation record for test pile T-1



Figure F-4. Manual installation record for test pile T-2

|                                       |                 |                |                  | Au            |                    |              | 200           |              | f Transpe<br>Instal  |             | Record       | I                                       | Pile                | Number / IC             | <b>)</b> :     |                     | 700-011-03<br>Construction |
|---------------------------------------|-----------------|----------------|------------------|---------------|--------------------|--------------|---------------|--------------|----------------------|-------------|--------------|-----------------------------------------|---------------------|-------------------------|----------------|---------------------|----------------------------|
| PROJECT:                              |                 |                |                  |               |                    |              |               | Worksh       | eet                  |             |              |                                         |                     | LZ                      |                | Dev                 | 01/16                      |
| PROJECT:<br>FP ID Number:             | 86 166          |                |                  |               |                    |              | nments:       | Tost         |                      |             |              | Pile Numb                               | er / ID:            | L2                      |                | Pag                 | je: 1                      |
| Project Descr.:                       | DFI Resea       | arch Proi      | iect             |               |                    | 1            | Luieros       | 100          |                      |             | -            | Pile Locati                             |                     | Okahun                  | npka FL        |                     |                            |
| Contractor:                           | DFI ACIP        |                |                  |               |                    | 1⊢           |               |              |                      |             |              | Installation                            |                     | 10/27/16                |                |                     |                            |
| Structure No./ID:                     | Test Area       |                |                  |               |                    | 1 🗆          |               |              |                      |             |              | Inspector                               | (s):                | Clay Da                 | vis            |                     |                            |
| THEORETICAL:                          | calculated OG   | F Vol. & S     | Strokes          | THEOF         | 1 _                | -            |               |              |                      |             |              |                                         |                     |                         |                |                     |                            |
| Segment / Incr.                       | OGF             | VOL.           | PUMP             | 100% V        |                    | gment l      |               |              |                      |             | 5.00         | _                                       |                     |                         | CALIBRA        |                     |                            |
| Length (ft)                           | (%)             | (cu ft)        | STROKES          | (cu ft)       | — 101              |              |               |              | egment on            |             | 1.05         | _                                       | VOLUME o            |                         |                | _                   | 6.15                       |
| 1 ft INCREMENT:                       | 115             | 3.61           | 5                | 3.14          | -1                 | _            |               | or OGF (Bo   | elow 5 ft de         | eptn):      | 1.15<br>5.00 |                                         | STROKES<br>PUMP CAL |                         |                |                     | 0.77                       |
| 5 ft *SEGMENT(s)                      |                 | 18.06          | 24               | 15.71         | 1 0                |              |               |              | (II).<br>nt (strokes | ).          | 21           | ا لــــــــــــــــــــــــــــــــــــ | POWP CAL            | (cu ivsir               | JKej.          |                     | 0.77                       |
| 5 ft Top SEGMENT                      |                 | 16.49          | 22               | 15.71         |                    |              |               | ocation (    |                      | ,.          |              |                                         |                     |                         |                |                     |                            |
| PILE Vol. & Str                       |                 | 142.94         | 186              | 125.66        | Gro                | out Des      | ign Str       | ength (ps    | i):                  |             | 600          | 0                                       | Design Ca           | apacity:                |                | 30 tons             |                            |
| * Oty of (7) full 115%-0              | GF, 5-ft segmer | nts, in this 4 | 0-ft pile [ belo | w the top (1) | 5-ft Reduc         | oed OGF      | segme         | nt ]         |                      |             |              |                                         |                     |                         |                |                     |                            |
|                                       | NSTALLAT        | ION D          | ATA              |               |                    | Actual       | Pile Le       | ength (ft) & | Segment              | Length (ft) | input comp   | lete.                                   |                     |                         |                |                     |                            |
| Plan Top Elev. (                      | ft, NGVD):      |                |                  | 141.00        | 41                 |              |               |              |                      |             | put comple   |                                         |                     |                         |                |                     |                            |
| Plan Length (ft):                     | HOVE            |                |                  | 40.00         | -J   <sub>F</sub>  |              |               |              |                      |             |              | om/1st lift is                          | complete.           |                         |                |                     |                            |
| Plan Tip Elev. (ft<br>Plan Dia. (ft): | , NGVD):        |                |                  | 2.00          | J E                |              |               |              |                      | ency < 21 s | eets 455 sp  | oec.                                    |                     |                         |                |                     |                            |
| GSE (ft, NGVD)                        | ):              |                | -+               | 140.00        | -  E               |              |               |              |                      |             |              | TICAL (Min.                             | Reg'd Grou          | t Head)                 |                |                     |                            |
| Drilling START (                      |                 |                |                  | 11:40 AM      | B                  |              |               |              |                      |             |              |                                         | e min. Theor        |                         | F volume r     | eq'd.               |                            |
| D Auger Rate (rpf)                    |                 |                |                  |               | A                  | Grout        | Return        | > or = the   | 'Min. Req'           | d Grout He  | ead' (5 ft)  | input above                             |                     |                         |                |                     |                            |
| R Drilling FINISH (                   | time):          |                |                  | 11:45 AM      | J C                | Reinfo       | orceme        | nt Placem    | ent Time, -          | 705 min, n  | neets 455    | spec limit ( -                          | or = 30 mir         | 1).                     |                |                     |                            |
| L Drilling TIME (m                    |                 |                | _                | 5             | ٦   ``             | Grout        | meets         | the Minimu   | ım required          | d Strength. |              |                                         |                     |                         |                |                     |                            |
| Actual Pile Dia.                      |                 | 21             | $\vdash$         | 2.00          | 41                 |              |               |              |                      |             |              |                                         |                     |                         |                |                     |                            |
| N Actual Pile Top E                   | and appropriate |                | . L              | 141.00        |                    |              | Φ-            | - fpipap     | COLBIT :             | - INCOME    | AENTALL.     | т.                                      | _                   |                         | OPOLIT         | VOLUMES             |                            |
| Overburden Lengt                      | 1 1 1 100 1     |                |                  | n/a<br>40.00  |                    | Т г          | DEPTH         |              | SEGMENT              | t = 'INCREI | GROUT        | PLIMP                                   | COUNT               | 10                      | NCREMENT       |                     | ACCRUED                    |
| Actual Tip Elev.                      |                 | 100)(10.       |                  | 101.00        |                    | Belo         |               | Top of       | EL                   | Cond.       | Pressure     | INCR.                                   | ACCRUED             | Theor.                  | _              | ctual               | Actual                     |
| Plant No.:                            |                 | 1 or 2 Con     | or, Trucks:      | 1             |                    | Top          |               | Segment      | (ft, NGVD)           | S, M, or H  | (psi)        | (Per 5ft)                               | (SUM)               | (cu ft)                 | (cu ft)        | % Theor.            | (cu ft)                    |
| _                                     |                 |                |                  | 1st Truck     | _   î              | 0            | (             | Pile TOP)    | 141.00               | Soil C      | ond.: Start  | input at Pile                           | TOP, Grout I        | Pump Coun               | it: start inpu | it at Pile BO       | TTOM.                      |
| Delivery Ticket N                     | lo.:            |                |                  | 41401206      | _   L              | 5            | 150           | 0            | 136.00               |             | 185          | 32                                      | 232                 | 15.71                   | 24.60          | 157 %               | 178.35                     |
| Batch (time):                         |                 |                |                  | 9:48 AM       | -  ¦               | 10           |               | 5            | 131.00               | 1           | 185          | 32                                      | 200                 | 15.71                   | 24.60          |                     | 153.75                     |
| Arrive (time):                        | 8               |                |                  | 10:11 AM      | -l l 'n            | 15           |               | 10           | 126.00               |             | 185          | 27                                      | 168                 | 15.71                   | 20.76          |                     | 129.15                     |
| Flow Cone Test ( Grout Temp. (%F)     |                 |                | -                | 17            | <b>-</b>     G     | 20           |               | 15<br>20     | 121.00               |             | 185<br>185   | 25<br>24                                | 141                 | 15.71<br>15.71          | 19.22<br>18.45 | 122 %<br>117 %      | 108.39<br>89.18            |
| R Grout Cylinders L                   |                 |                |                  | Sample 6      | -   &              | 30           |               | 25           | 111.00               |             | 185          | 24                                      | 92                  | 15.71                   | 18.45          | 117 %               | 70.73                      |
| O Placement STAR                      |                 |                | _                | 11:45 AM      | <b></b>            | 35           |               | 30           | 106.00               |             | 185          | 24                                      | 68                  | 15.71                   | 18.45          | 117 %               | 52.28                      |
| T Starting Pressure                   |                 |                |                  | 185           | <b>-</b>   G       | 40           |               | 35           | 101.00               |             | 185          | 44                                      | 44                  | 15.71                   | 33.83          | 215 %               | 33.83                      |
| Actual Initial Pun                    | np Count (stro  | kes):          |                  | 22            |                    |              | 121           |              |                      |             |              |                                         | 1                   |                         |                |                     |                            |
| Auger Depth @ G                       | rout Return (   | ft):           |                  | 5.0           | U                  |              | (*)           |              |                      |             |              |                                         |                     |                         |                |                     |                            |
| Truck Empty (tin                      |                 |                |                  |               |                    |              |               |              |                      |             |              |                                         | 4                   |                         |                |                     |                            |
| Placement FINISH                      |                 |                |                  | 11:50 AM<br>5 | <b>」</b>   'n      |              |               |              |                      |             |              |                                         | -                   |                         |                |                     |                            |
| Placement TIME<br>Mixer TIME (mir     |                 |                |                  | 5             | G                  |              | 101           |              |                      |             |              |                                         | -                   |                         |                |                     |                            |
| S Reinf. Condition                    |                 | (Y or N):      | $\overline{}$    | Y             | $\neg \mid_{\tau}$ |              |               |              |                      |             |              |                                         | -                   |                         |                |                     |                            |
| T Reinf, Placement                    |                 |                |                  | 11:50 AM      |                    |              | -             |              |                      |             |              |                                         | 1                   |                         |                |                     |                            |
| E Reinf. Placement                    | FINISH (time    | e):            |                  | 12:05 AM      |                    |              | (*)           |              |                      |             |              |                                         | 1                   |                         |                |                     |                            |
| L Reinf. Comments                     |                 |                | ar - 12x#8 C     | *             | 그   È              |              | 100           |              |                      |             |              |                                         | ]                   |                         |                |                     |                            |
|                                       | ROUT STRE       | NGTH T         | ESTING F         |               | -  I               |              |               |              |                      |             |              |                                         | 1                   |                         |                |                     |                            |
| S Minimum Required                    |                 |                | $\vdash$         | 1st Truck     | 4 🗀                |              | 15            |              | ***                  |             |              |                                         |                     | 105.00                  |                | 1100                | 470.05                     |
| Comments:                             |                 |                |                  | 6220          |                    | Pile         | BOILG         | OM @ depth   | n = 40 H             |             | Total Pu     | 232<br>mp Strokes                       | Total Tho           | 125.66<br>or. Vol. (cf) |                | 142 %<br>Theor. (%) | 178.35<br>Actual (cf)      |
| Continents.                           |                 |                |                  |               |                    | -            |               |              |                      |             | TOTALFU      | inp suowes                              | Total Ille          | n. vol (ci)             | Poctual        | 11801. (76)         | Accusa (cr)                |
|                                       |                 |                |                  |               |                    | $\neg$       |               |              | Auger                | Cast Pi     | le - Gro     | ut Curve                                | •                   |                         | Actual Curve   |                     |                            |
|                                       |                 |                |                  |               |                    | _            | 4             | 5            | rago                 | <u> </u>    | io aro       | at Odi vo                               |                     |                         | Theoretical (  | ourve.              |                            |
| GRO                                   | OUT VOLUM       | E PLAC         | EMENT R          | ESULTS        |                    |              | 41            | ,            |                      |             |              |                                         |                     | , ,                     |                |                     |                            |
| SEGMENT VOL                           | UMES (cu ft)    | _              | THEORETIC        | CAL           | ACCEPTA            | NCE          | 3             | 1            |                      |             |              |                                         |                     |                         |                |                     |                            |
| Descr. ACII                           | 100 Prog 26     |                | % Theor.         | % Over        | Min. %             | P/F          | € 3           |              |                      |             |              |                                         |                     |                         |                |                     |                            |
| Plac                                  | 10000           | _              | Actual/Theor     |               | Placed             | 1.7,21.7     | (dn-2         |              |                      |             |              |                                         |                     |                         |                |                     |                            |
| TOP 5-ft 24.6<br>BELOW 5-ft 153.      | -,-,-,-         | 105            | 157 %<br>140 %   |               |                    | Pass<br>Pass | 7-E           | 1            |                      |             | /            |                                         |                     |                         |                |                     |                            |
| Total Pile 178                        | 110000000       | 114            | 140 %            | Pile Pas      |                    | Pass         | 50 20         |              |                      | 1           |              |                                         |                     |                         |                |                     |                            |
| 10001110 170                          | 120.00          | . 14           | 1.72 70          | , ne r es     | J. Oil             | 400          | Depth (bottom | 5            |                      | /           |              |                                         |                     |                         |                |                     |                            |
| FINAL ACE                             | PTANCE          |                | Pile N           | lot Yet Acc   | epted              |              | Deg 1         | 1            |                      |             |              |                                         |                     |                         |                |                     |                            |
| Accepted or                           | Rejected ? (i   | nput "A" o     | or "R"):         |               |                    |              |               | 5            |                      |             |              |                                         |                     |                         |                |                     |                            |
| Pile Acc                              | eped or Rejec   | ted (date)     | i:               |               |                    |              |               |              | 1                    | 40          | <u></u>      | 11111                                   |                     |                         |                |                     |                            |
| Comments:                             |                 |                |                  |               |                    |              |               | 0            | 20                   | 40          | 60           | 80 10                                   | 00 120              | 140                     | 160            | 180                 | 200                        |

**Figure F-5.** Manual installation record for test pile L-1

|                                              |                    |             |                | Aug               |         |           | -Plac                |                   |               | ortation<br>lation l | Record      | I            | Pile           | Number / II       | D:            |             | 700-011-03<br>Construction<br>01/16 |
|----------------------------------------------|--------------------|-------------|----------------|-------------------|---------|-----------|----------------------|-------------------|---------------|----------------------|-------------|--------------|----------------|-------------------|---------------|-------------|-------------------------------------|
| PROJECT:                                     |                    |             |                |                   |         | _         | ments:               |                   |               |                      |             |              |                |                   |               | Pag         | je: 1                               |
| FP ID Number:                                | 86 166<br>DELBassa | . 2         |                |                   |         | 18" L     | ateral Te            | est               |               |                      |             | Pile Num     |                | L1                |               |             |                                     |
| Project Descr.:                              | DFI Resea          |             |                |                   |         | ┨         |                      |                   |               |                      |             | Pile Loca    |                | Okahun<br>10/27/1 | npka FL       |             |                                     |
| Contractor:<br>Structure No./ID:             | Test Area          |             | millee         |                   |         | ┨         |                      |                   |               |                      |             | Installation |                | Clay Da           |               |             |                                     |
| THEORETICAL: ca                              |                    |             | Strokes        | THEOR.            |         |           |                      |                   |               |                      |             | Inspector    | (S).           | Clay Da           | IVIS          |             |                                     |
| Segment / Incr.                              | OGF                | VOL.        | PUMP           | 100% Vol.         | Sec     | gment Le  | ength (              | ft):              |               |                      | 5.00        |              |                | PUMP              | CALIBRAT      | TION        |                                     |
| Length (ft)                                  | (%)                | (cu ft)     | STROKES        | (cu ft)           | I -     | _         |                      |                   | Segment on    | nly):                | 1.05        |              | VOLUME o       |                   |               |             | 5.50                                |
| 1 ft INCREMENT:                              |                    | 2.03        | 3              | 1.77              | (0)     |           |                      |                   | selow 5 ft de |                      | 1.15        | _            | STROKES        | to Fill Con       | t. (strokes): |             | 7                                   |
|                                              | 115                |             |                |                   | ag N    | иin. Req  | 'd Grou              | ut Head           | (ft):         |                      | 5.00        |              | PUMP CAL       | (cu ft/str        | oke):         |             | 0.79                                |
| 5 ft *SEGMENT(s):                            |                    | 10.16       | 13             | 8.84              | 운 T     | heor. In  | itial Pur            | mp Cour           | nt (strokes   | ):                   | 12          |              |                |                   |               |             |                                     |
| 5 ft Top SEGMENT:                            |                    | 9.28        | 12             | 8.84              | -       |           |                      | cation (          | -             |                      |             |              |                |                   |               |             |                                     |
| PILE Vol. & Stro                             |                    | 80.41       | 103            | 70.69             |         |           |                      | ngth (ps          | i):           |                      | 600         | 0            | Design Ca      | apacity:          |               | 15 tons     |                                     |
| * Oty of (7) full 115%-OC                    |                    |             |                | w the top (1) 5-1 | t Reduc | _         |                      |                   |               | 1. 141               |             | -10          |                |                   |               |             |                                     |
|                                              | NSTALLAT           | TON D       | ATA            | 111.00            |         | the board |                      |                   |               | Length (ft)          |             |              |                |                   |               |             |                                     |
| Plan Top Elev. (ft<br>P<br>Plan Length (ft): | , NGVD).           |             | ⊢              | 141.00<br>40.00   |         |           |                      |                   |               | t Lengths in         |             |              | is complete.   |                   |               |             |                                     |
| A Plan Tip Elev. (ft,                        | NGVD):             |             | _              | 101.00            | F       |           |                      |                   |               | iameter, m           |             |              | is complete.   |                   |               |             |                                     |
| N Plan Dia. (ft):                            | Nov.               |             | Г              | 1.50              | I E     | -         |                      |                   |               | ency < 21 s          |             | 360.         |                |                   |               |             |                                     |
| GSE (ft, NGVD):                              |                    |             | -              | 140.00            | E       |           |                      |                   |               |                      |             | TICAL (Mir   | n. Reg'd Grou  | t Head)           |               |             |                                     |
| Drilling START (ti                           |                    |             |                | 9:20 AM           | В       | 2 00      |                      |                   |               |                      |             |              | he min. Theor  |                   | F volume re   | q'd.        |                                     |
| D Auger Rate (rpf):                          |                    |             |                |                   | A       |           |                      |                   |               | 'd Grout He          |             |              |                |                   |               |             |                                     |
| R Drilling FINISH (ti                        | ime):              |             |                | 9:26 AM           | C<br>K  | Reinfor   | rcemen               | t Placem          | ent Time, 7   | 7 min, mee           | ets 455 spe | o limit ( <  | or = 30 min ). |                   |               |             |                                     |
| Drilling TIME (mir                           |                    |             | _              | 6                 | .   ``  | Grout m   | neets th             | e Minimu          | um required   | d Strength.          |             |              |                |                   |               |             |                                     |
| L Actual Pile Dia. (f                        |                    |             | L              | 1.50              |         |           |                      |                   |               |                      |             |              |                |                   |               |             |                                     |
| N Actual Pile Top El                         |                    |             | L              | 141.00            |         |           | 2500                 |                   |               |                      |             | T            |                |                   |               |             |                                     |
| Overburgen Leng                              |                    |             | <sub>μ</sub> – | n/a               |         | Т г       |                      |                   |               | t = 'INCREI          | _           | I            | TANINIT        | <u> </u>          | GROUT V       |             |                                     |
| Actual Pile Length<br>Actual Tip Elev. (     |                    | lop)(11):   | ∟              | 40.00<br>101.00   | i I     |           | EPTH                 |                   | SEGMENT       | SOIL<br>Cond.        | GROUT       | INCR.        | ACCRUED        | Theor.            | NCREMENTA     | AL<br>tual  | ACCRUED<br>Actual                   |
| Plant No.:                                   | II, NGV D).        | 1 or 2 Con  | or Trucks:     | 101.00            | ı D     | Below     |                      | Top of<br>Segment | (it, NGVD)    | S, M, or H           | (psi)       | (Per 5ft     |                | (cu ft)           | (cu ft)       | % Theor.    | (cu ft)                             |
| Flank NV.                                    |                    | 1444        |                | 1st Truck         | I R     | 0         |                      | Me TOP)           | 141.00        |                      |             |              | TOP, Grout I   |                   |               | at Pile BOT |                                     |
| Delivery Ticket No                           | o::                |             |                | 41401201          | ı l     | 5         | 150                  | 0                 | 136.00        |                      | 185         | 13           | 123            | 8.84              | 10.21         | 116 %       | 96.64                               |
| Batch (time):                                | 1                  |             | '⊢             | 8:20 AM           | Įί      | 10        | (2)                  | 5                 | 131.00        |                      | 185         | 14           | 110            | 8.84              | 11.00         | 124 %       | 86.43                               |
| Arrive (time):                               |                    |             |                | 8:43 AM           | L       | 15        | 100                  | 10                | 126.00        |                      | 185         | 14           | 96             | 8.84              | 11.00         | 124 %       | 75.43                               |
| Flow Cone Test (s                            | sec):              |             |                | 18                | N<br>G  | 20        | 121                  | 15                | 121.00        |                      | 185         | 14           | 82             | 8.84              | 11.00         | 124 %       | 64.43                               |
| G Grout Temp. (°F):                          |                    |             |                |                   |         | 25        | (*)                  | 20                | 116.00        |                      | 185         | 14           | 68             | 8.84              | 11.00         | 124 %       | 53.43                               |
| R Grout Cylinders LC                         |                    |             | L              | Sample 3          | 8       | 30        |                      | 25                | 111.00        |                      | 185         | 14           | 54             | 8.84              | 11.00         | 124 %       | 42.43                               |
| U Placement START                            |                    |             | ⊢              | 9:26 AM           | G       | 35        | (*)                  | 30                | 106.00        |                      | 185         | 14           | 40             | 8.84              | 11.00         | 124 %       | 31.43                               |
| Starting Pressure                            |                    | 42.         | ⊢              | 185               | R       | 40        | 150                  | 35                | 101.00        |                      | 185         | 26           | 26             | 8.84              | 20.43         | 231 %       | 20.43                               |
| Actual Initial Pum                           |                    |             | ⊢              | 13<br>8.0         | 0       |           | 200                  |                   |               | <u> </u>             | -           |              | $\dashv$       |                   |               |             |                                     |
| Auger Depth @ Gr<br>Truck Empty (tim         |                    | IIJ.        | <b>—</b>       | 8.0               | U       |           | -                    |                   |               |                      | -           |              | $\dashv$       |                   |               |             |                                     |
| Placement FINISH                             |                    |             |                | 9:29 AM           | Нí      |           |                      |                   |               |                      | -           |              | $\dashv$       |                   |               |             |                                     |
| Placement TIME                               |                    |             | _              | 3                 | N       |           |                      |                   |               |                      |             |              | ┨              |                   |               |             |                                     |
| Mixer TIME (min.                             |                    |             |                |                   | G       |           |                      |                   |               |                      |             |              | ┥              |                   |               |             |                                     |
| S Reinf. Condition S                         | Satisfactory?      | (Y or N):   |                | Υ                 | Т       |           | 100                  |                   |               |                      |             |              | ╛              |                   |               |             |                                     |
| T Reinf. Placement                           | START (time        | e):         |                | 9:29 AM           | A       |           |                      |                   |               |                      |             |              |                |                   |               |             |                                     |
| E Reinf. Placement                           | FINISH (time       | e):         |                | 9:36 AM           | В       |           | $(\star)$            |                   |               |                      |             |              |                |                   |               |             |                                     |
| L Reinf. Comments:                           | #1                 | 1 Centerb   | oar - 8x#8 C   | age x 35 ft       | E       |           | 12.0                 |                   |               |                      |             |              |                |                   |               |             |                                     |
| e .                                          | ROUT STRE          | NGTH T      | ESTING         | Results           | 11-     |           |                      |                   |               |                      |             |              |                |                   |               |             |                                     |
| E Does the Grout M<br>S Minimum Required S   |                    |             | L              | 1st Truck         | ╷∟      |           | 350                  |                   |               |                      |             |              |                |                   |               |             |                                     |
| T or N ):                                    |                    |             |                | 6750              |         | Pile      | BOTTON               | M @ depti         | h = 40 ft     |                      |             | 123          |                | 70.69             |               | 137 %       | 96.64                               |
| Comments:                                    |                    |             |                |                   |         | _         |                      |                   |               |                      | Total Pu    | mp Strokes   | Total The      | or. Vol. (cf)     | Actual/Tr     | 190r. (%)   | Actual (cf)                         |
|                                              |                    |             |                |                   |         |           |                      |                   | 120           |                      | y 121       |              |                |                   | Actual Curve  |             |                                     |
|                                              |                    |             |                |                   |         |           | 100                  |                   | <u>Auger</u>  | Cast Pi              | ile - Gro   | ut Curv      | es es          |                   | Theoretical C | urve        |                                     |
| GRO                                          | UT VOLUM           | E DI AC     | EMENT          | ESIII TS          |         | $\neg 1$  | 45                   |                   |               |                      |             |              |                | $\Box$            |               |             |                                     |
|                                              | UMES (cu ft)       |             | THEORETIC      |                   | CEPTAN  | NCE       | 40                   |                   |               |                      |             |              | /              |                   |               |             |                                     |
| SEGMENT                                      |                    | _           | % Theor.       | Min               | . %     |           | 35                   |                   |               | -                    |             |              |                |                   |               |             |                                     |
| Descr. Place                                 | 2000               |             | Actual/Theor   | % Over Plac       |         | P/F       | € 30                 |                   |               | -                    |             | /            |                |                   |               |             | $\equiv$                            |
| TOP 5-ft 10.2                                | 500                | 105         | 116%           | 11 % 116          | _       | Pass      | G 25                 |                   |               |                      | /           |              |                |                   |               |             |                                     |
| BELOW 5-ft 86.43                             | 3 61.85            | 115         | 140 %          | 25 % 124          | 4%      | Pass      | Depth (bottom-up) 12 |                   |               |                      |             |              |                |                   |               |             |                                     |
| Total Pile 96.6                              | 4 70.69            | 114         | 137 %          | Pile Pass/F       | ail:    | Pass      | 10 te                |                   |               |                      |             |              |                |                   |               |             |                                     |
|                                              |                    |             |                |                   |         |           | pt                   |                   |               |                      |             |              |                |                   |               |             |                                     |
| FINAL ACE                                    | PTANCE             |             | Pile 1         | Not Yet Accept    | ed      |           | å 10                 |                   |               |                      |             |              |                |                   |               |             |                                     |
| Accepted or I                                | Rejected? (i       | input "A" o | or "R"):       |                   |         |           | 5                    |                   |               |                      |             |              |                |                   |               |             |                                     |
|                                              | eped or Rejec      | ted (date)  | į.             |                   |         |           | 0                    |                   | 20            |                      | 40          |              | 60             | 80                | <del></del> , | 00          | 120                                 |
| Comments:                                    |                    |             |                |                   |         |           |                      |                   | 20            | 1                    |             | Grout Vol    | ume ( cu ft )  | 00                |               | 00          | 120                                 |

**Figure F-6.** Manual installation record for test pile L-2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             | Auge                |                                       |                                                                                |                                                                                                                                                                             |            | of Transpo    |            | Record     | I                 | Pile               | Number / II            | D:             | (                   | 700-011-03<br>Construction |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|-------------|---------------------|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|------------|-------------------|--------------------|------------------------|----------------|---------------------|----------------------------|--|--|
| PROJECT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |             |                     |                                       |                                                                                |                                                                                                                                                                             | Worksh     | neet          |            |            |                   |                    | E.I                    |                | Pag                 | 01/16<br>ge: 1             |  |  |
| FP ID Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 86 166         |                      |             |                     | Comments:  Extraction Pile Pile Numbe |                                                                                |                                                                                                                                                                             |            |               |            |            | ber / ID:         | E1                 |                        | Pag            | je: 1               |                            |  |  |
| Project Descr.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | DFI Research Project |             |                     |                                       |                                                                                |                                                                                                                                                                             | Pile Loca  |               |            |            |                   |                    | 10.50,001 10.50        |                |                     |                            |  |  |
| Contractor: DFI ACIP Pile Committee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                      |             |                     |                                       |                                                                                | 0 8 0                                                                                                                                                                       |            |               |            |            |                   | ion Date: 10/27/16 |                        |                |                     |                            |  |  |
| Structure No./ID: Test Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                      |             |                     |                                       |                                                                                |                                                                                                                                                                             |            |               |            |            | Inspector         | (s):               | Clay Da                | vis            |                     |                            |  |  |
| THEORETICAL: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alculated OG   | F Vol. & S           |             | THEOR.              |                                       |                                                                                |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Segment / Incr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OGF            | VOL.                 | PUMP        | 100% Vol.           |                                       | gment l                                                                        |                                                                                                                                                                             |            |               |            | 5.00       | _                 |                    |                        | CALIBRA        | TION                |                            |  |  |
| Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (%)            | (cu ft)              | STROKES     | (cu ft)             | (3)                                   |                                                                                |                                                                                                                                                                             |            | Segment on    |            | 1.05       | _                 | VOLUME o           |                        |                | .  -                | 5.50                       |  |  |
| 1 ft INCREMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 115            | 2.03                 | 3           | 1.77                | $\rightarrow$                         | _                                                                              |                                                                                                                                                                             |            | Below 5 ft de | epth):     | 5.00       |                   | STROKES            |                        |                | 8                   | 7<br>0.79                  |  |  |
| 5 ft *SEGMENT(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115            | 10.16                | 13          | 8.84                | 0                                     |                                                                                |                                                                                                                                                                             | out Head   |               | ١.         | 12         |                   | PUMP CAL           | (cu ivstr              | оке):          |                     | 0.79                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       | Theor. Initial Pump Count (strokes): 12 ssure Gage Location (descr.):          |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       | out Design Strength (psi): 6000                                                |                                                                                                                                                                             |            |               |            |            | 0 T               | Design Capacity:   |                        |                |                     |                            |  |  |
| * Oty of (7) full 115%-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |             |                     |                                       |                                                                                | _                                                                                                                                                                           | _          |               |            |            |                   | o congili o        | .,                     |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       |                                                                                | Actual Pile Length (ft) & Segment Length (ft) input complete.                                                                                                               |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Plan Top Elev. (ft, NGVD): 141.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                      |             |                     |                                       | Table rows for the Pile & Segment Lengths input complete.                      |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Plan Length (ft): 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                      |             |                     |                                       | Table input of the table PUMP COUNT data, for the bottom/1st lift is complete. |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| A Plan Tip Elev. (ft, NGVD): 101.00 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                      |             |                     |                                       |                                                                                | Actual Pile Diameter = Plan Pile Diameter, meets 455 spec.                                                                                                                  |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Plan Dia. (ft): 1.50 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                      |             |                     |                                       |                                                                                | Flow Cone Test, FAILED (Consistency < 21 sec)                                                                                                                               |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       |                                                                                | Note: ACTUAL initial pump count OK, > or = THEORETICAL (Min. Reg'd Grout Head)                                                                                              |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| A A STATE OF THE S |                |                      |             |                     |                                       |                                                                                | Actual Grout volume placed is OK. All incr. segments are > or = the min. Theoretical OGF volume req'd.  Grout Return > or = the "Min. Req'd Grout Head" (5 ft) input above. |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| B Delling FINISH (time):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                      |             |                     |                                       |                                                                                | Reinforcement Placement Time, 7 min, meets 455 spec limit ( < or = 30 min ).                                                                                                |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       |                                                                                | Follow-up to verify the Grout meets the Minimum Required Strength.                                                                                                          |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| L Actual Pile Dia. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                      | Г           | 1.50                |                                       | 0.000                                                                          |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| N Actual Pile Top E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lev. (ft, NGVI | D):                  |             | 141.00              |                                       |                                                                                |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| G Overburden Leng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gth (above Pla | n Top) (ft)          |             | n/a                 |                                       |                                                                                | Тур                                                                                                                                                                         | e of PUMP  | COUNT inpu    | t = 'INCRE | MENTAL':   | I                 |                    |                        | GROUT          | VOLUMES             | 3                          |  |  |
| Actual Pile Lengti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h (below Pile  | Top)(ft):            |             | 40.00               |                                       | [                                                                              | DEPTH                                                                                                                                                                       | (ft)       | SEGMENT       | SOIL       | GROUT      | PUMP              | COUNT              | , Ir                   | NCREMENT       | AL                  | ACCRUED                    |  |  |
| Actual Tip Elev. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (ft, NGVD):    |                      |             | 101.00              | D                                     | Belo                                                                           | w                                                                                                                                                                           | Top of     | EL            | Cond.      | Pressure   | INCR.             | ACCRUED            | Theor.                 | _              | ctual               | Actual                     |  |  |
| Plant No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 1 or 2 Con           | _           | 2                   | R                                     | Top                                                                            |                                                                                                                                                                             | Segment    | (ft, NGVD)    | S, M, or H | (psi)      | (Per 5ft)         |                    | (cu ft)                | (cu ft)        | % Theor.            | (cu ft)                    |  |  |
| T2 Start Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | 2nd Tru              |             | 1st Truck           | 12                                    | 0                                                                              |                                                                                                                                                                             | Pile TOP)  | 141.00        | Soil C     | _          |                   | TOP, Grout         |                        |                |                     |                            |  |  |
| Delivery Ticket No<br>Batch (time):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.:            | 4140120<br>8:20 Al   |             | 41401199<br>8:00 AM | L                                     | 10                                                                             |                                                                                                                                                                             | 0<br>5     | 136.00        |            | 185<br>185 | 16<br>16          | 138                | 8.84<br>8.84           | 12.57<br>12.57 | 142 %<br>142 %      | 108.43<br>95.86            |  |  |
| Arrive (time):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H              | 8:43 Al              |             | 8:00 AM<br>8:25 AM  | Į i                                   | 15                                                                             |                                                                                                                                                                             | 10         | 126.00        |            | 185        | 18                | 106                | 8.84                   | 14.14          | 160 %               |                            |  |  |
| Flow Cone Test (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sec):          | 18                   | <u> </u>    | 15                  | N                                     | 20                                                                             |                                                                                                                                                                             | 15         | 121.00        |            | 185        | 14                | 88                 | 8.84                   | 11.00          | 124 %               |                            |  |  |
| G Grout Temp. (°F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _              | -                    |             |                     | G                                     | 25                                                                             |                                                                                                                                                                             | 20         | 116.00        |            | 185        | 17                | 74                 | 8.84                   | 13.36          | 151 %               |                            |  |  |
| R Grout Cylinders L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OT (ID):       | Sample               | 2           |                     | &                                     | 30                                                                             |                                                                                                                                                                             | 25         | 111.00        |            | 185        | 14                | 57                 | 8.84                   | 11.00          | 124 %               | 44.79                      |  |  |
| U Placement START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (time):        | 9:06 Al              | M           | 9:04 AM             |                                       | 35                                                                             |                                                                                                                                                                             | 30         | 106.00        | 1          | 185        | 14                | 43                 | 8.84                   | 11.00          | 124 %               | 33.79                      |  |  |
| T Starting Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (psi):         | 185                  |             | 185                 | G                                     | 40                                                                             | 100                                                                                                                                                                         | 35         | 101.00        |            | 185        | 29                | 29                 | 8.84                   | 22.79          | 258 %               | 22.79                      |  |  |
| Actual Initial Pump Count (strokes): 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                      |             |                     |                                       |                                                                                | 121                                                                                                                                                                         |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Auger Depth @ Grout Return (ft): 13.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                      |             |                     |                                       | (*)                                                                            |                                                                                                                                                                             |            |               |            |            | 4                 |                    |                        |                |                     |                            |  |  |
| Truck Empty (tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 9:07 Al              | _           | 9:06 AM<br>9:06 AM  | I                                     |                                                                                |                                                                                                                                                                             |            |               |            | _          |                   | -                  |                        |                |                     |                            |  |  |
| Placement TIME (min.): 1 2 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                      |             |                     |                                       |                                                                                |                                                                                                                                                                             |            | _             | _          |            | $\dashv$          |                    |                        |                |                     |                            |  |  |
| Mixer TIME (min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             | 66                  | G                                     |                                                                                |                                                                                                                                                                             |            |               |            |            |                   | ┨                  |                        |                |                     |                            |  |  |
| 8 Reinf. Condition S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | (Y or N):            |             | Y                   | lτ                                    |                                                                                | 120                                                                                                                                                                         |            |               |            |            |                   | _                  |                        |                |                     |                            |  |  |
| T Reinf. Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | START (time    | e):                  |             | 9:07 AM             | A                                     |                                                                                |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| E Reinf. Placement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FINISH (time   | e):                  |             | 9:14 AM             | B                                     |                                                                                | (*)                                                                                                                                                                         |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| L Reinf. Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                      | Centerbar   |                     | ΙĒ                                    |                                                                                | 120                                                                                                                                                                         |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROUT STRE      |                      |             |                     |                                       |                                                                                |                                                                                                                                                                             |            |               |            |            |                   | 4                  |                        |                |                     |                            |  |  |
| S Minimum Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 2nd Tru              | _           | 1st Truck           |                                       | Dile                                                                           | - DOTT                                                                                                                                                                      | W @ de-    | h 10.6        |            |            | 100               |                    | 70.00                  |                | 150.0/              | 100.40                     |  |  |
| comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 6430                 |             |                     |                                       | Pile                                                                           | BOTT                                                                                                                                                                        | OM @ dept  | tn = 40 It    |            | Total Du   | 138<br>mp Strokes | Total Tho          | 70.69<br>or. Vol. (cf) | Actual/        | 153 %<br>Theor. (%) | 108.43<br>Actual (cf)      |  |  |
| Comments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                      |             |                     |                                       | -                                                                              |                                                                                                                                                                             |            |               |            | TOTALFO    | IIIp Strokes      | Total Ille         | VI. VOL (CI)           | Portugue       | 11801. (20)         | Accusa (ci)                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       | $\neg$                                                                         |                                                                                                                                                                             |            | Auger         | Cast Pi    | ile - Gro  | ut Curve          | ac .               |                        | Actual Curve   |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                      |             |                     |                                       |                                                                                | 4                                                                                                                                                                           | 5          | Auger         | Castri     | ile - Gro  | at Oai ve         | 23                 | -                      | Theoretical (  | Surve               |                            |  |  |
| GRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UT VOLUM       | IE PLAC              | EMENT F     | RESULTS             |                                       |                                                                                | 40                                                                                                                                                                          |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UMES (cu ft)   | %1                   | HEORET      | CAL AC              | EPTA                                  | NCE                                                                            | 35                                                                                                                                                                          |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| SEGMENT<br>Descr. Actu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al Theor.      | OGF                  | % Theor.    | % Over Min          | %                                     | P/F                                                                            | € 30                                                                                                                                                                        | 1          |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Plao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2021           | _                    | ctual/Theor | Plac                | ed                                    |                                                                                | ○ 3t                                                                                                                                                                        | ' <b>=</b> |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| TOP 5-ft 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 105                  | 142 %       | 37 % 142            | -                                     | Pass                                                                           | 5 25<br>E                                                                                                                                                                   | 5          |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| BELOW 5-ft 95.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 115                  | 155 %       | 40 % 124            | _                                     | Pass                                                                           | 010                                                                                                                                                                         | •          |               | 1          |            |                   |                    |                        |                |                     |                            |  |  |
| Total Pile 108.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43 70.69       | 114                  | 153 %       | Pile Pass/F         | alli:                                 | Pass                                                                           | 9 1                                                                                                                                                                         | 5          |               | /          |            |                   |                    |                        |                |                     |                            |  |  |
| FINAL ACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PTANCE         |                      | Pile        | Not Yet Accept      | ed                                    |                                                                                | Depth (bottom-up)                                                                                                                                                           | •          | -/            |            |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rejected ? (i  | input "A" o          |             | TOT TOT MODERA      | -u                                    |                                                                                |                                                                                                                                                                             | s .        |               | /          |            |                   |                    |                        |                |                     |                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eped or Rejec  |                      |             |                     |                                       |                                                                                |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 0                    | 20          |                     | 40                                    | 0 20 40 60 80 100 120                                                          |                                                                                                                                                                             |            |               |            |            |                   |                    |                        |                |                     |                            |  |  |

Figure F-7. Manual installation record for test pile E-1

# **APPENDIX G**

SELECT THERMAL INTEGRITY
PROFILING (TIP) TEST RESULTS –
THERMAL PROBES AND THERMAL
WIRES



Figure G-1. Temperature profile for pile C2 at peak temperature taken via probe system (Mullins and Johnson, 2017)





**Figure G-2.** Thermal profile of pile E-1 (extracted) at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017)



Figure G-3. Thermal profile of (a) pile T-1 and (b) pile T-2 at the center bar reinforcement (Mullins and Johnson, 2017)



**Figure G-4.** Thermal profile of pile C-2 at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017)



**Figure G-5.** Thermal profile of pile C-2 at (a) center bar reinforcement and (b) reinforcement cage (Mullins and Johnson, 2017)

## **APPENDIX H**

# CALIBRATION DATA - HYDRAULIC JACK AND LOAD CELL

1140 5th Avenue North, Birmingham, Al. 3520 205-251-8156 Fax: 205-323-4367

#### JACK CALIBRATION REPORT

| L 35203<br>7 | 18        |
|--------------|-----------|
|              | 100 otoro |
| UAL          | γ.        |
| One          |           |

| CUSTOMER: BERKEL AND CO.                      | PROJECT: SEMI-ANNUAL                                                                                                                                           |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REPORT NO: 1462660BAMA                        | DATE: September 22, 2016                                                                                                                                       |
|                                               |                                                                                                                                                                |
| CYLINDER: RCD1006A 100T 6in STR CH JACK       | SERIAL NO: 61129 (61)                                                                                                                                          |
| GAUGE: WIKA 10,000psi 6in DIAL                | SERIAL NO: 1102QF1                                                                                                                                             |
|                                               |                                                                                                                                                                |
| performed utilizing our 1000-Ton Test Frame   | on for the above Hydraulic Cylinder. Calibration was S/N 245017. The 1000-Ton Test Frame uses three 660 0129, and GSE662 digital readout indicator, S/N 055826 |
|                                               | ed on April 18, 2016 in accordance with ASTM E4 and is                                                                                                         |
|                                               |                                                                                                                                                                |
| Temperature during test 80 Degrees Fahrenheit |                                                                                                                                                                |
| By! Jana law                                  |                                                                                                                                                                |
| Date: September 22, 2016                      |                                                                                                                                                                |

C:\Users\Uim\Documents\CUSTOMER CALIBRATIONS\ALABAMA CALIBRATION TEMPLATES\BERKEL CONT# 1462660BAMA 100T 6in CH JACK SN 61129 w WIKA GAUGE SN 1102QF1.xls

Figure H-1. Calibration report for 100 ton hydraulic jack

ALABAMA JACK, DIVISION OF BEERMAN

1140 5th Avenue North, Birmingham, AL 35203 205-251-8156 Fax: 205-323-4367

#### PRESSURE GAUGE CERTIFICATION

| PROJECT: SEMI-ANNUAL |
|----------------------|
| DATE: 9/22/16        |
|                      |
| SERIAL NO: 1102QF1   |
|                      |

We certify the above hydraulic pressure gauge has been tested against our primary standard, an Ametek T-110 Dead Weight Tester, S/N 101479, and found to be within an accuracy of +/- 1/2% of full scale. The Ametek Tester was last certified on April 15, 2016 to 0.1% accuracy and traceable to the National Institute of Standards and Technology (NIST).

| Standard Pressure | (PSI) | Your Pressure | Gauge | (PSI) |
|-------------------|-------|---------------|-------|-------|
|-------------------|-------|---------------|-------|-------|

| 0      | 0      |
|--------|--------|
| 1000   | 900    |
| 2000   | 1900   |
| 3000   | 2900   |
| 4000   | 3900   |
| 5000   | 4900   |
| 6000   | 5950   |
| 7000   | 6950   |
| 8000   | 8000   |
| 9000   | 9000   |
| 10,000 | 10,000 |

By:

Date:

September 22, 2016

BEERMAN PRECISION, INC.

Figure H-1. Calibration report for 100 ton hydraulic jack continued

emy lens

1140 5th Avenue North, Birmingham, AL 35203 205-251-8156 Fax: 205-323-4367

### JACK CALIBRATION REPORT

| CUSTOMER: BERKEL AND CO.                | PROJECT: SEMI-ANNUAL     |
|-----------------------------------------|--------------------------|
| REPORT NO: 1462660BAMA                  | DATE: September 22, 2016 |
|                                         |                          |
| CYLINDER: RCD1006A 100T 6in STR CH JACK | SERIAL NO: 61129         |
| GAUGE: WIKA 10,000psi 6in DIAL          | SERIAL NO: 1102QF1       |
|                                         |                          |

| STANDARD LOAD |   | GAUGE READINGS IN PSI AT PISTON EXTENSION OF |   |        |   |        | AVE GAUGE    |
|---------------|---|----------------------------------------------|---|--------|---|--------|--------------|
| (TONS)        | 1 | INCHES                                       | 3 | INCHES | 5 | INCHES | PRESSURE     |
| 10.0          |   | 950                                          |   | 000    |   | 200    | 000          |
| 20.0          |   | 050                                          |   | 050    |   | 000    | 983          |
| 30.0          |   | 900                                          |   | 050    |   | 000    | 2050         |
| 40.0          |   | 050                                          |   | 000    |   | 000    | 2983<br>4017 |
| 50.0          |   | 050                                          |   | 000    |   | 000    | 5017         |
| 60.0          |   | 000                                          |   | 0000   |   | 000    | 6000         |
| 70.0          |   | 050                                          |   | 0000   |   | 050    | 7033         |
| 80.0          |   | 050                                          |   | 000    |   | 050    | 8033         |
| 90.0          |   | 0000                                         |   | 950    |   | 000    | 8983         |
| 99.0          |   | 850                                          |   | 9800   |   | 850    | 9833         |
|               |   |                                              |   | ,000   |   | -      | 9033         |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
|               |   |                                              |   |        |   |        |              |
| BY:           |   |                                              |   |        |   |        |              |

Figure H-1. Calibration report for 100 ton hydraulic jack continued





Figure H-1. Calibration report for 100 ton hydraulic jack continued

## Alabama Jack Division of Beerman Precision 1140 5th Avenue North, Birmingham, AL 35203 205-251-8156 Fax: 205-323-4367



#### JACK CALIBRATION REPORT

| CUSTOMER: BERKEL & CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROJECT: RENTAL          |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| REPORT NO: 1469087BAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE: November 17, 2015  |  |  |  |
| CYLINDER: 500 TON 8in STROKE CENTERHOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SERIAL NO: BM8838 (3513) |  |  |  |
| GAUGE: WIKA 10,000psi 6in DIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SERIAL NO: 1101UXL2      |  |  |  |
| This report covers the results of Calibration for the above Hydraulic Cylinder. Calibration was performed utilizing our 1000-Ton Test Frame S/N 245017. The 1000-Ton Test Frame uses three 660 Kip Master Load Cells, S/Ns 58201, 58202, 60129, and GSE662 digital readout indicator, S/N 055826. The Master Load Cells were recently calibrated on April 18, 2016 in accordance with ASTM E4 and is within a 0.5% tolerance. Results of current calibration are shown on the following pages: |                          |  |  |  |
| Temperature during test68_ Degrees Fahrenhelt                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |  |  |  |
| By Dann line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |  |  |  |
| Date: November 17, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |  |  |  |

ALABAMA JACK, DIVISION OF BEERMAN

C:\Users\Lim\Documents\CUSTOMER CALIBRATIONS\BERKEL CONT# 1489067BAMA 500T 8\h STR CENTERHOLE 8N BM8836 3513 w WIKA GAUGE 9N# 1101UXL2.xla

Figure H-2. Calibration report for 500 ton center hole hydraulic jack



Figure H-2. Calibration report for 500 ton center hole hydraulic jack continued

1140 5th Avenue North, Birmingham, AL 35203 205-251-8156 Fax: 205-323-4367

#### JACK CALIBRATION REPORT

| PROJECT: RENTAL          |                                                   |  |
|--------------------------|---------------------------------------------------|--|
| DATE: November 17, 2015  |                                                   |  |
| SERIAL NO: BM8838 (3513) |                                                   |  |
| SERIAL NO: 1101UXL2      |                                                   |  |
|                          | DATE: November 17, 2015  SERIAL NO: BM8838 (3513) |  |

| (TONS) 1  50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0 | 900<br>1750<br>2600<br>3450<br>4300<br>5150<br>5950<br>6800<br>7600<br>8450 | 950<br>1756<br>2600<br>3456<br>4300<br>5100<br>5956<br>6800<br>7600<br>8400 |        | 1:<br>2:<br>3:<br>4:<br>5:<br>5:<br>6:<br>7: | INCHES  800 800 800 450 300 100 950 800 600 450 | 933<br>1767<br>2600<br>3450<br>4300<br>5117<br>5960<br>6800<br>7600<br>8433 |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|----------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|
| 100.0<br>150.0<br>200.0<br>250.0<br>300.0<br>350.0<br>400.0<br>450.0 | 1750<br>2600<br>3450<br>4300<br>5150<br>5950<br>6800<br>7600                | 1750<br>2600<br>3450<br>4300<br>5100<br>5950<br>6800<br>7600                |        | 1:<br>2:<br>3:<br>4:<br>5:<br>5:<br>6:<br>7: | 800<br>600<br>450<br>300<br>100<br>950<br>800   | 1767<br>2600<br>3450<br>4300<br>5117<br>5950<br>6800<br>7600                |
| 100.0<br>150.0<br>200.0<br>250.0<br>300.0<br>350.0<br>400.0<br>450.0 | 1750<br>2600<br>3450<br>4300<br>5150<br>5950<br>6800<br>7600                | 1750<br>2600<br>3450<br>4300<br>5100<br>5950<br>6800<br>7600                |        | 1:<br>2:<br>3:<br>4:<br>5:<br>5:<br>6:<br>7: | 800<br>600<br>450<br>300<br>100<br>950<br>800   | 1767<br>2600<br>3450<br>4300<br>5117<br>5950<br>6800<br>7600                |
| 150.0<br>200.0<br>250.0<br>300.0<br>350.0<br>400.0<br>450.0          | 2600<br>3450<br>4300<br>5150<br>5950<br>6800<br>7600                        | 260<br>345<br>430<br>510<br>595<br>680<br>760                               |        | 2<br>3<br>4<br>5<br>5<br>6                   | 800<br>450<br>300<br>100<br>950<br>800          | 2600<br>3450<br>4300<br>5117<br>5950<br>6800<br>7600                        |
| 200.0<br>250.0<br>300.0<br>350.0<br>400.0<br>450.0                   | 3450<br>4300<br>5150<br>5950<br>6800<br>7600                                | 3450<br>4300<br>5100<br>5950<br>6800<br>7600                                |        | 3<br>4<br>5<br>5<br>6                        | 450<br>300<br>100<br>950<br>800<br>600          | 3450<br>4300<br>5117<br>5950<br>6800<br>7600                                |
| 250.0<br>300.0<br>350.0<br>400.0<br>450.0                            | 4300<br>5150<br>5950<br>6800<br>7600                                        | 430<br>510<br>595<br>680<br>760                                             |        | 4<br>5<br>5<br>6                             | 300<br>100<br>950<br>800<br>600                 | 4300<br>5117<br>5950<br>6800<br>7600                                        |
| 350.0<br>400.0<br>450.0                                              | 5950<br>6800<br>7600                                                        | 510<br>595<br>680<br>760                                                    | )<br>) | 5<br>5<br>6                                  | 100<br>950<br>800<br>600                        | 5117<br>5950<br>6800<br>7600                                                |
| 400.0<br>450.0                                                       | 6800<br>7600                                                                | 595<br>680<br>760                                                           | )      | 5<br>6<br>7                                  | 950<br>800<br>600                               | 5950<br>6800<br>7600                                                        |
| 450.0                                                                | 7600                                                                        | 760                                                                         | )      | 6                                            | 800<br>600                                      | 6800<br>7600                                                                |
|                                                                      |                                                                             |                                                                             |        | 7                                            | 600                                             | 7600                                                                        |
| 500.0                                                                | 8450                                                                        | 8400                                                                        | )      |                                              |                                                 |                                                                             |
|                                                                      |                                                                             |                                                                             | -,     |                                              |                                                 |                                                                             |
|                                                                      |                                                                             |                                                                             |        |                                              |                                                 |                                                                             |

Figure H-2. Calibration report for 500 ton center hole hydraulic jack continued

1140 5th Avenue North, Birmingham, AL 35203 205-251-8156 Fax: 205-323-4367

### PRESSURE GAUGE CERTIFICATION

| CUSTOMER: BERKEL & CO           | PROJECT: RENTAL         |
|---------------------------------|-------------------------|
| REPORT NO: 1469067BAMA          | DATE: November 17, 2016 |
| GAUGE: WIKA 10,000psi 6in DIAL  | SEDIAL NO. 4404UM 2     |
| GAOGE, WINA 10,000psi oiii DIAL | SERIAL NO: 1101UXL2     |

We certify the above hydraulic pressure gauge has been tested against our primary standard, an Ametek T-110 Dead Weight Tester, S/N 101479, and found to be within an accuracy of +/- 1/2% of full scale. The Ametek Tester was last certified on April 15, 2016 to 0.1% accuracy and traceable to the National Institute of Standards and Technology (NIST).

Standard Pressure (PSI) Your Pressure Gauge (PSI)

| 0      | 0      |
|--------|--------|
| 1000   | 1050   |
| 2000   | 2050   |
| 3000   | 3050   |
| 4000   | 4050   |
| 5000   | 5050   |
| 6000   | 6050   |
| 7000   | 7100   |
| 8000   | 8100   |
| 9000   | 9100   |
| 10,000 | 10,100 |

By:

Date:

November 17, 2016

Vmur Dum

BEERMAN PRECISION, INC.

Figure H-2. Calibration report for 500 ton center hole hydraulic jack continued







## Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

| Model Number: | GK-501 | Serial Number:                        | 1104552 |  |
|---------------|--------|---------------------------------------|---------|--|
|               |        | · · · · · · · · · · · · · · · · · · · |         |  |

Signed by: Martin of Silson Date: November 17, 2016

Quality Assurance Manager



Figure H-3. Calibration report for 600 ton center hole load cell

### **Load Cell Calibration Report**

Model Number:

3000-600-5

Calibration Date: November 15, 2016

Serial Number: 1110291

This calibration has been verified/validated as of 11/17/2016

Max. Range (lbs): \_\_\_\_\_\_600000

Calibration Instruction: CI-3000 GRIMCO

Initial Cycling Data

Cable Length: 40 feet

Calibration

| Load (lbs):      | 0   | 0   | 900000 | 0   |
|------------------|-----|-----|--------|-----|
| Reading(Digits): | 517 | 517 | 6660   | 522 |

Technician:

160 ET

| Applied Load in                                                                            | Read                                                                               | ings from CR10-X DA                                                        | ATA LOGGER(DIGI                                                                    | TS)                                                                | Linearity                                                                                | Polynomial                                                                                |  |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| lbs                                                                                        | Cycle 1                                                                            | Cycle 2                                                                    | Average                                                                            | Change                                                             | % Max Load                                                                               | Error (%FS)                                                                               |  |
| 0<br>60000<br>120000<br>180000<br>240000<br>300000<br>360000<br>420000<br>480000<br>540000 | 517<br>923<br>1332<br>1738<br>2150<br>2557<br>2968<br>3388<br>3786<br>4206<br>4615 | 517<br>926<br>1329<br>1741<br>2150<br>2562<br>2981<br>3388<br>3810<br>4211 | 517<br>925<br>1331<br>1740<br>2150<br>2560<br>2975<br>3388<br>3798<br>4209<br>4615 | 408<br>406<br>409<br>410<br>410<br>415<br>413<br>410<br>411<br>406 | 0.19<br>0.11<br>0.00<br>-0.05<br>-0.05<br>-0.09<br>0.02<br>0.08<br>0.06<br>0.06<br>-0.05 | 0.13<br>0.08<br>-0.02<br>-0.05<br>-0.05<br>-0.08<br>0.03<br>0.09<br>0.06<br>0.04<br>-0.09 |  |
| 0                                                                                          | 519                                                                                | 517                                                                        | 518                                                                                |                                                                    |                                                                                          |                                                                                           |  |

Linear Gage Factor (G): 146.1 lbs/digit

Regression Zero (R<sub>0</sub>):\* 509

Polynomial Gage Factors:

A: -0.00009044 B: 146.6

C: -74970

Polynomial,  $L = AR_{1}^{2} + BR_{1} + C$  Full Scale mV/V: 1.025

Calculate C by setting L=0 and R, = initial field zero reading in the polynomial equation

The above named instrument has been calibrated in conformance with the requirements of Geokon QAM Rev.13, dated 07/12/2012 and SOP-M&TE-001- Control of Measuring and Monitoring Equipment Rev.L, dated 09/2013, by comparison with standards traceable to the NIST, in compliance with ANSI/NCSL Z540-1.

This report shall not be reproduced except in full without written permission of Geokon Inc.

Figure H-3. Calibration report for 600 ton center hole load cell continued

<sup>\*</sup> Note: The above calibration uses a linear regression method. The Regression Zero Reading shown is ideal for straight line computation and does not usually agree with the actual no-load reading.



48 Spencer Street Lebanon, NH 03766, USA Tel: 603-448-1562 Fax: 603-448-3216 E-mail: geokon@geokon.com http://www.geokon.com

## Service Report (this is not an invoice)

INVOICE WILL BE PROVIDED SEPARATELY DATE REC'D: November 04, 2016 RA NUMBER: 7248 MDA 20026532R15 / 20051767 ORIGINAL Berkel TERMS: P/O #: Net 30 E-mail Heath PURCHASER: COMPANY ACCT #: Berkel & Co Contractors, Inc. 3169 Heath Burge CONTACT: 770-941-5100 PO Box 335 PHONE #: 770-941-6300 2647 South 142nd St hburge@berkelandcompany.com Bonner Springs, KS 66012 E-MAIL: MODEL NUMBER: 3000-600-5 DESCRIPTION: Resistance Strain Gage Load Cell Berkel & Co Contractors, Inc. QTY: WARRANTY; Attn: Heath Burge 1110291 7300 Marks Lane Austell, GA 30168 ADDITIONAL Attached (40) feet 04-375V9 w/10-pin, brown RECEIVED: Truck (Old Dominion) JOBOX CUSTOMER Service and calibration w/GK-501 S/N 07-13222 There are two previous repairs to the cable with black tape. Cable and connector are okay. No-load reading is within 3 digits of previous factory reading. Resistance pairs readings are normal. No shorts present. Calibrated. Function tested. REPLACEMENT PART S/N REPAIRED BY: **EVC** OTY: PRICE: PARTS: TOTAL LABOR HOURS: \$750.00 10000-17 Calibration 1.00 LABOR HOURS BILLED: CALIBRATED BY: RATE: **QA MANAGER** \$100.00 LABOR TOTAL: REPAIR COMPLETE: 11-17---16 \$0.00 PARTS TOTAL: SHIPPED/CLOSED: November 18, 2016 \$750.00 Fault Field: REPAIR TOTAL Calibration \$750.00 SHOP ORDER: 30136212 2 of 4 Geotechnical Instrumentation 14373 INVOICE WILL BE PROVIDED SEPARATELY

Figure H-3. Calibration report for 600 ton center hole load cell continued



48 Spencer Street
Lebanon, NH 03766, USA
Tel: 603-448-1562
Fax: 603-448-3216
E-mail: geokon@geokon.com
http://www.geokon.com

## Service Report (this is not an invoice) INVOICE WILL BE PROVIDED SEPARATELY

| DATE REC'I            | November 04, 2016 RA NUMB                       | ER: 7248 | MDA            | JOB#:                  | 20                    | 0016209R26       | 5 / 20051767           |
|-----------------------|-------------------------------------------------|----------|----------------|------------------------|-----------------------|------------------|------------------------|
| 1                     | * Net 30 E-mail Heath                           |          |                | ORIGINAL               |                       | WB Equ           | ipment                 |
| COMPANY<br>ACCT#:     | Berkel & Co Contractors, Inc                    | c. 3169  |                | PURCHASER:<br>CONTACT: | Heath Bu              | -                | •                      |
| BILL-TO<br>ADDRESS:   | PO Box 335                                      |          |                | PHONE #:               | 770-941-              |                  |                        |
| NODITEGO.             | 2647 South 142nd St                             |          |                | FAX #:                 | 770-941-              | 6300             |                        |
|                       | Bonner Springs, KS 66012                        |          |                | E-MAIL:                | hburge@               | berkelandcom     | pany.com               |
|                       |                                                 |          |                | MODEL NUMBER:          | 3000-100              | 0-6              |                        |
| SHIP-TO               | Berkel & Co Contractors, Inc.                   |          |                | DESCRIPTION:           | Resistand             | ce Strain Gage   | Load Cell              |
| ADDRESS:              | Attn: Heath Burge                               |          |                | QTY:                   | 1                     | WARRANTY:        |                        |
|                       | 7300 Marks Lane                                 |          |                | S/N:                   | 08-22592              | Bulkhead         |                        |
|                       | Austell, GA 30168                               |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                | ADDITIONAL<br>ITEM\$   | Patch cor             | d, red JOBOX     |                        |
| SHIP VIA:             | Truck (Old Dominion)                            |          |                | RECEIVED:              |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
| CUSTOMER<br>COMMENTS: | Service and calibration<br>w/GK-501 S/N 1104552 |          |                |                        |                       |                  |                        |
| REPAIR<br>COMMENTS    | Cable and connectors are okay                   |          | -              | _                      |                       | us factory read  | ding. Resistance pairs |
|                       | readings are normal. No shorts                  | present  | t. Calibrated. | Function te            | ested.                |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
| REPLACEME             | NT PART S/N:                                    |          |                |                        |                       |                  |                        |
|                       |                                                 |          |                |                        |                       |                  |                        |
| PARTS:                |                                                 | QTY:     | PRICE:         |                        |                       | REPAIRED BY:     | EVC                    |
| 10000-1               | 17 Calibration                                  | 1        | \$750.         | 00 TOTAL I             | ABOR HOURS:           |                  |                        |
|                       |                                                 |          |                |                        | 1.00                  |                  |                        |
|                       |                                                 |          |                | LABOR                  | HOURS BILLED:         |                  |                        |
|                       |                                                 |          |                |                        | 0.00                  | CALIBRATED BY:   | MT                     |
|                       |                                                 |          |                | R/                     | ATE:                  |                  | Ch.                    |
|                       |                                                 |          |                |                        | \$100.00<br>OR TOTAL: | QA MANAGER:      | 35                     |
|                       |                                                 |          |                | CAB                    | \$0.00                | REPAIR COMPLETE: | 11—17—16               |
|                       |                                                 |          |                | PAR                    | RTS TOTAL:            |                  |                        |
|                       |                                                 |          |                |                        | \$750.00              | SHIPPED/CLOSED:  | November 18, 2016      |
|                       |                                                 |          |                | REPA                   | IR TOTAL:             | Fault            | Field:                 |
|                       |                                                 |          |                |                        | \$750.00              | Ca               | alibration             |
| SHOP ORDE             | <sup>:R:</sup> 30136214                         |          |                |                        |                       |                  |                        |
| 4 of 4                |                                                 |          |                |                        |                       |                  |                        |
|                       | ical Instrumentation                            |          | INVOICE        | WILL BE PE             | ROVIDED S             | SEPARATELY       | 14375                  |

Figure H-3. Calibration report for 600 ton center hole load cell continued

### W. B. EQUIPMENT SERVICE CO. INC 127 OAK STREET

WOOD RIDGE, NJ 07075 TEL: 201-438-7800 FAX: 201-438-7830



| Date:       | 11/17/16                |          |                   |
|-------------|-------------------------|----------|-------------------|
| W.B. EQUIPM | ENT SERVICE CO. INC NO: |          | _                 |
| CUSTOMER:   | BERKEL                  |          | ORDER NO:         |
| CYLINDER:   | 1000 TONS STROKE:       | 6"       | SERIAL NO: WB823  |
| GAUGE:      | 4INCH DIAMETER:         | 10000PSI | SERIAL NO: WB1285 |

| CYLINDER FORCE | GAUGE READING | AVERAGE PRESSURE |      |
|----------------|---------------|------------------|------|
| TONS           | AT RAM EXTENS | SIONS            | PSI  |
|                | 1 INCH        | 4 INCHES         |      |
| 0              | 0             | 0                | 0    |
| 75             | 775           | 800              | 800  |
| 150            | 1550          | 1550             | 1550 |
| 300            | 3050          | 3050             | 3050 |
| 450            | 4525          | 4550             | 4550 |
| 600            | 6000          | 6025             | 6025 |
| 750            | 7525          | 7525             | 7525 |
| 900            | 8950          | 8975             | 8975 |
|                |               |                  |      |
|                |               |                  |      |
|                |               |                  |      |
|                |               |                  |      |

CALIBRATION PERFORMED BY:DARREN CIRECO
OUTPUT MEASURED BY LOAD CELL MODEL # 1100881, SERIAL # 58022 WITH STRAIN
INDICATOR RICELAKE IQ-355, SERIAL # 175212

Figure H-4. Calibration report for 1,000 ton hydraulic jack



Figure H-4. Calibration report for 1,000 ton hydraulic jack continued

### W. B. EQUIPMENT SERVICE CO. INC. 127 OAK STREET WOOD-RIDGE, NJ 07075

TEL: 201-438-7800 FAX: 201-438-7830



| GAUGE CERTIFICATION            |                       |
|--------------------------------|-----------------------|
| W. B. EQUIPMENT SERVICE CO NO: | DATE: <u>11/17/16</u> |
| CUSTOMER: BERKEL               |                       |
| ORDER NO:                      |                       |
| GAUGE SERIAL NO:               | CAPACITY              |
|                                |                       |
|                                | <u>10000 PSI</u>      |

WB1285

4 INCH DIAL

WE CERTIFY THAT THE HYDRAULIC GAUGES LISTED ABOVE HAVE BEEN TESTED PRIOR TO SHIPMENT AND FOUND TO BE WITHIN STANDARD COMMERCIAL ACCURACY OF 2% PLUS-OR-MINUS OF FULL SCALE.

VERY TRULY YOURS, W. B. EQUIPMENT SERVICE CO. INC.

DARREN CIRECO

Figure H-5. Calibration report for 1,000 ton load cell

### W. B. EQUIPMENT SERVICE CO. INC. 127 OAK STREET

#### WOOD RIDGE, NJ 07075 TEL: 201-438-7800 FAX: 201-438-7830

|                 | LOADCELL CALIBRATION REPORT |                       |  |  |  |  |  |  |  |  |
|-----------------|-----------------------------|-----------------------|--|--|--|--|--|--|--|--|
| W. B. EQUIPMENT | SERVICE ORDER NO            | DATE: <u>11/17/16</u> |  |  |  |  |  |  |  |  |
| CUSTOMER: BERK  | EL ORDER NO:                |                       |  |  |  |  |  |  |  |  |
| LOADCELL: 1000  | TONS MODEL: GEOKON          | SERIAL NO: 1021728    |  |  |  |  |  |  |  |  |
| READOUT BOX M   | ODEL: <u>GK501</u>          | SERIAL NO: 08-24751   |  |  |  |  |  |  |  |  |
| STANDARD PLUG   | READING:                    | GAUGE FACTOR:         |  |  |  |  |  |  |  |  |

| APPLIED LOAD | STRAIN INDIC | ATOR READINGS | AVERAGE STRAIN |
|--------------|--------------|---------------|----------------|
| TONS         | CYCLE 1      | CYCLE 2       | READING        |
| 0            | 368          | 366           | 367            |
| 75           | 894          | 890           | 892            |
| 150          | 1322         | 1320          | 1321           |
| 300.         | 2084         | 2052          | 2068           |
| 450          | 2840         | 2814          | 2827           |
| 600          | 3616         | 3586          | 3601           |
| 750          | 4400         | 4366          | 4383           |
| 900          | 5200         | 5170          | 5185           |
|              |              |               |                |
|              |              | <u> </u>      |                |
|              |              | -             |                |
|              |              |               |                |
|              |              |               | -              |
|              |              |               |                |

OUTPUT MEASURED BY LOAD CELL MODEL # 1100881 SERIAL NUMBER 58022 WITH STRAIN INDICATOR RICELAKE IQ -355 SERIAL NUMBER 175212

TEST PERFORMED BY: <u>DARREN CIRECO</u> DATE: 11/17/16

Figure H-5. Calibration report for 1,000 ton load cell continued

## **APPENDIX I**

## COMPRESSION LOAD TEST SETUP AND TEST RESULTS

**Table I-1.** Load – displacement measurements during axial compression loading test of pile C-1

| PILE DIAMETER:     | 18 IN                      |                | CONTRACTOR                 | : BERKEL       |                |                |             | PILE ID:       | Cl             |
|--------------------|----------------------------|----------------|----------------------------|----------------|----------------|----------------|-------------|----------------|----------------|
| PILE LENGTH:       |                            |                | PILE TYPE :                | ACIP           | EL TOP         |                |             | JACK S/N:      |                |
| LOAD TEST TYPE:    | COMPRESSION                |                | WEATHER:                   | WINDY/SUNNY    | 19 (11) 5      |                |             | GAUGE S/N:     | 1101UXL2       |
|                    | Tanner Swafford            |                |                            |                | a To           |                |             | LOAD CELL S/N: | 1021728        |
|                    |                            |                |                            |                | RACTORS.       |                |             | BEGIN DATE:    | 12/1/2016      |
|                    |                            |                |                            |                |                |                |             | END DATE:      | 12/1/2016      |
| TDAT               | JACI                       | ζ              | LOAI                       | D CELL         |                | P              | ILE HEAD M  | OVEMENT        |                |
| TIME               | PRESSURE (psi)             | LOAD (tons)    | (dgs)                      | Load (tons)    | DIAL 1 (in)    | DIAL 2 (in)    | DIAL 3 (in) | DIAL 4 (in)    | AVG (in)       |
| 12:40 PM           | 0 / 0                      | 0.0            | 367 / 396                  | 4.1            | 0.000          | 0.000          | 0.000       | 0.000          | 0.000          |
| 12:40 PM           | 280 / 300                  | 16.1           | 472 / 453                  | 12.3           | 0.002          | 0.002          | 0.001       | 0.002          | 0.002          |
| 12:44 PM           | 280 / 150                  | 8.0            | 472 / 418                  | 7.3            | 0.001          | 0.002          | 0.001       | 0.002          | 0.002          |
| 12:45 PM           | 560 / 550                  | 29.5           | 577 / 580                  | 30.4           | 0.011          | 0.013          | 0.012       | 0.011          | 0.012          |
| 12:49 PM           | 560 / 450                  | 24.1           | 577 / 538                  | 24.4           | 0.018          | 0.009          | 0.008       | 0.008          | 0.011          |
| 12:50 PM           | 840 / 850                  | 45.6           | 682 / 694                  | 46.7           | 0.022          | 0.026          | 0.025       | 0.020          | 0.023          |
| 12:54 PM           | 840 / 800                  | 42.9           | 682 / 680                  | 44.7           | 0.022          | 0.026          | 0.022       | 0.027          | 0.024          |
| 12:55 PM           | 1100 / 1100                | 60.0           | 787 / 790                  | 60.4           | 0.037          | 0.043          | 0.036       | 0.030          | 0.037          |
| 12:59 PM           | 1100 / 1050                | 57.0           | 787 / 776                  | 58.4           | 0.040          | 0.045          | 0.042       | 0.035          | 0.041          |
| 1:00 PM            | 1350 / 1400                | 78.0           | 892 / 901                  | 76.6           | 0.065          | 0.071          | 0.066       | 0.057          | 0.065          |
| 1:04 PM            | 1350 / 1350                | 75.0           | 892 / 878                  | 73.0           | 0.065          | 0.071          | 0.066       | 0.056          | 0.065          |
| 1:05 PM            | 1600 / 1650                | 93.0           | 977 / 991                  | 92.3           | 0.087          | 0.095          | 0.087       | 0.076          | 0.086          |
| 1:09 PM            | 1600 / 1550                | 87.0           | 977 / 971                  | 88.8           | 0.090          | 0.097          | 0.088       | 0.076          | 0.088          |
| 1:10 PM            | 1850 / 1900                | 108.0          | 1063 / 1087                | 109.1          | 0.119          | 0.126          | 0.117       | 0.104          | 0.117          |
| 1:14 PM            | 1850 / 1750                | 99.0           | 1063 / 1064                | 105.1          | 0.124          | 0.130          | 0.120       | 0.117          | 0.123          |
| 1:15 PM            | 2100 / 2250                | 129.0          | 1149 / 1230                | 134.1          | 0.170          | 0.179          | 0.169       | 0.154          | 0.168          |
| 1:19 PM            | 2100 / 2100                | 120.0          | 1149 / 1203                | 129.4          | 0.177          | 0.185          | 0.174       | 0.158          | 0.174          |
| 1:20 PM            | 2350 / 2500                | 144.0          | 1235 / 1323                | 150.4          | 0.205          | 0.212          | 0.204       | 0.186          | 0.202          |
| 1:24 PM            | 2350 / 2350                | 135.0          | 1235 / 1292                | 144.9          | 0.213          | 0.220          | 0.219       | 0.192          | 0.211          |
| 1:25 PM            | 2600 / 2750                | 158.8          | 1321 / 1414                | 168.7          | 0.245          | 0.253          | 0.241       | 0.223          | 0.241          |
| 1:29 PM            | 2600 / 2600                | 150.0          | 1321 / 1386                | 163.1          | 0.254          | 0.261          | 0.25        | 0.232          | 0.249          |
| 1:30 PM            | 2855 / 3000                | 173.5          | 1395 / 1518                | 189.6          | 0.292          | 0.300          | 0.286       | 0.269          | 0.287          |
| 1:34 PM            | 2855 / 2850                | 164.7          | 1395 / 1485                | 182.9          | 0.302          | 0.309          | 0.298       | 0.277          | 0.297          |
| 1:35 PM            | 3110 / 3250                | 188.2          | 1470 / 1609                | 207.8          | 0.335          | 0.343          | 0.332       | 0.311          | 0.330          |
| 1:39 PM            | 3110 / 3100                | 179.4          | 1470 / 1571                | 200.2          | 0.346          | 0.351          | 0.340       | 0.319          | 0.339          |
| 1:40 PM            | 3365 / 3500                | 202.9          | 1545 / 1718                | 229.7          | 0.389          | 0.395          | 0.385       | 0.363          | 0.383          |
| 1:44 PM            | 3365 / 3350                | 194.1          | 1545 / 1677                | 221.5          | 0.400          | 0.405          | 0.394       | 0.372          | 0.393          |
| 1:45 PM            | 3620 / 3750                | 217.6          | 1619 / 1821                | 250.4          | 0.455          | 0.459          | 0.450       | 0.426          | 0.448          |
| 1:49 PM            | 3620 / 3600                | 208.8          | 1619 / 1774                | 241.0          | 0.459          | 0.464          | 0.451       | 0.427          | 0.450          |
| 1:50 PM            | 3875 / 4050                | 235.3          | 1694 / 1923                | 270.9          | 0.506          | 0.513          | 0.501       | 0.476          | 0.499          |
| 1:54 PM            | 3875 / 4300                | 250.0          | 1694 / 1878                | 261.8          | 0.521          | 0.526          | 0.515       | 0.490          | 0.513          |
| 1:55 PM            | 4130 / 4300<br>4130 / 4100 | 250.0          | 1769 / 2004<br>1769 / 1960 | 287.1<br>278.3 | 0.564          | 0.569<br>0.581 | 0.554       | 0.530          | 0.554          |
| 1:59 PM<br>2:00 PM | 4381 / 4600                | 238.2<br>268.4 | 1843 / 2145                | 315.2          | 0.578<br>0.645 | 0.581          | 0.568       | 0.542<br>0.612 | 0.567<br>0.637 |
| 2:04 PM            | 4381 / 4400                | 256.1          | 1843 / 2073                | 301.0          | 0.667          | 0.670          | 0.654       | 0.620          | 0.653          |
| 2:05 PM            | 4626 / 4800                | 280.6          | 1918 / 2206                | 327.3          | 0.712          | 0.718          | 0.699       | 0.670          | 0.700          |
| 2:09 PM            | 4626 / 4575                | 266.8          | 1918 / 2146                | 315.4          | 0.712          | 0.716          | 0.716       | 0.686          | 0.717          |
| 2:10 PM            | 4871 / 5000                | 292.8          | 1993 / 2280                | 341.9          | 0.778          | 0.784          | 0.766       | 0.737          | 0.766          |
| 2:14 PM            | 4871 / 4750                | 277.5          | 1993 / 2205                | 327.1          | 0.797          | 0.799          | 0.782       | 0.753          | 0.783          |
| 2:15 PM            | 5117 / 5400                | 317.0          | 2068 / 2420                | 369.6          | 0.917          | 0.926          | 0.907       | 0.879          | 0.907          |
| 2:19 PM            | 5117 / 5100                | 299.0          | 2068 / 2341                | 354.0          | 0.947          | 0.949          | 0.930       | 0.900          | 0.932          |
| 2:20 PM            | 5366 / 5550                | 326.0          | 2143 / 2475                | 380.4          | 1.030          | 1.035          | 1.021       | 0.990          | 1.019          |
| 2:24 PM            | 5366 / 5250                | 308.0          | 2143 / 2397                | 365.0          | 1.055          | 1.058          | 1.043       | 1.008          | 1.041          |
| 2:25 PM            | 5616 / 5900                | 347.0          | 2219 / 2750                | 434.8          | 1.215          | 1.224          | 1.215       | 1.185          | 1.210          |
| 2:29 PM            | 5616 / 5500                | 323.0          | 2219 / 2490                | 383.4          | 1.263          | 1.268          | 1.255       | 1.220          | 1.252          |
| 2:30 PM            | 5866 / 6100                | 358.8          | 2295 / 2700                | 424.9          | 1.440          | 1.447          | 1.434       | 1.400          | 1.430          |
| 2:31 PM            | 5866 / 5600                | 329.0          | 2295 / 2529                | 391.1          | 1.465          | 1.468          | 1.458       | 1.420          | 1.453          |
| 2:35 PM            | 6120 / 6300                | 370.6          | 2371 / 2755                | 435.8          | 1.965          | 1.970          | 1.956       | 1.918          | 1.952          |
| 2:39 PM            | 6120 / 5900                | 347.0          | 2371 / 2657                | 416.4          | 2.005          | 2.010          | 1.984       | 1.941          | 1.985          |
| 2:40 PM            | 6375 / 6300                | 311.0          | 2447 / 2759                | 436.6          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:44 PM            | 6375 / 5900                | 347.0          | 2447 / 2333                | 352.4          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:45 PM            | 4920 / 4920                | 287.9          | 2008 / 2333                | 352.4          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:49 PM            | 4920 / 4950                | 289.8          | 2008 / 2336                | 353.0          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:50 PM            | 3722 / 3700                | 214.7          | 1650 / 1888                | 263.9          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:54 PM            | 3722 / 3700                | 214.7          | 1650 / 1896                | 265.5          | 2.077          | 2.080          | 2.092       | 2.070          | 2.080          |
| 2:55 PM            | 2500 / 2500                | 144.0          | 1286 / 1429                | 171.7          | 2.050          | 2.054          | 2.050       | 2.035          | 2.047          |
| 2:59 PM            | 2500 / 2450                | 141.0          | 1286 / 1443                | 174.5          | 2.046          | 2.051          | 2.047       | 2.032          | 2.044          |
| 3:00 PM            | 1300 / 1300                | 72.0           | 871 / 960                  | 86.9           | 2.018          | 2.031          | 2.016       | 1.994          | 2.015          |
| 3:04 PM            | 1300 / 1400                | 78.0           | 871 / 979                  | 90.2           | 2.015          | 2.028          | 2.014       | 1.992          | 2.012          |
| 3:05 PM            | 0 / 0                      | 0.0            | 367 / 396                  | 4.1            | 1.885          | 1.894          | 1.879       | 1.865          | 1.881          |
| 3:09 PM            | 0 / 0                      | 0.0            | 367 / 395                  | 4.0            | 1.880          | 1.890          | 1.875       | 1.861          | 1.877          |
|                    | Target/Actual              |                | Target/Actual              |                |                |                |             |                |                |

**Table I-2.** Strain gauge readings during axial compression loading test of pile C-1

| PILE DIAMETER:     | 18 IN          |                | CONTRACTOR   | BERKEL        |               | ,             |               | PILE ID:       | Cl            |
|--------------------|----------------|----------------|--------------|---------------|---------------|---------------|---------------|----------------|---------------|
| PILE LENGTH:       |                |                | PILE TYPE :  |               | Street & C    | Mod           |               | JACK S/N:      |               |
| LOAD TEST TYPE:    |                | N              |              | WINDY/SUNN    | Y TO          | 50            |               | GAUGE S/N:     |               |
| BERKEL REP:        |                |                |              |               | 6             | Jy            |               | LOAD CELL S/N: |               |
|                    |                | _              |              |               | TRACTO        | RS.           |               | BEGIN DATE:    |               |
|                    |                |                |              |               |               |               |               | END DATE:      | 12/1/2016     |
| TD C               | JACK           | LOAD CELL      |              |               | STI           | RAIN GAGE RE  | EADINGS       |                |               |
| TIME               | LOAD (tons)    | Load (tons)    | 2' (1632099) | 10' (1632097) | 20' (1632095) | 30' (1632094) | 40' (1632091) | 50' (1631529)  | 58' (1631528) |
| 12:40 PM           | 0.0            | 4.1            | 6782         | 6881          | 6702          | -             | 6557          | 6762           | 6884          |
| 12:40 PM           | 16.1           | 12.3           | x            | x             | x             | -             | x             | x              | x             |
| 12:44 PM           | 8.0            | 7.3            | 6771         | 6872          | 6697          | -             | 6556          | 6762           | 6885          |
| 12:45 PM           | 29.5           | 30.4           | X            | X             | X             | -             | X             | x              | x             |
| 12:49 PM           | 24.1           | 24.4           | 6704         | 6816          | 6647          | -             | 6545          | 6755           | 6885          |
| 12:50 PM           | 45.6           | 46.7           | x            | x             | x             | -             | x             | x              | x             |
| 12:54 PM           | 42.9           | 44.7           | 6619         | 6746          | 6588          | -             | 6525          | 6744           | 6880          |
| 12:55 PM           | 60.0           | 60.4           | X            | X             | X             | -             | X             | X              | X             |
| 12:59 PM           | 57.0           | 58.4           | 6561         | 6696          | 6540          | -             | 6505          | 6733           | 6875          |
| 1:00 PM            | 78.0           | 76.6           | X            | X             | X             | -             | X             | X              | X             |
| 1:04 PM            | 75.0           | 73.0           | 6499         | 6642          | 6488          | -             | 6482          | 6714           | 6864          |
| 1:05 PM            | 93.0           | 92.3           | X            | X             | X             | -             | X             | X              | X             |
| 1:09 PM            | 87.0           | 88.8           | 6445         | 6592          | 6442          | -             | 6461          | 6699           | 6855          |
| 1:10 PM            | 108.0          | 109.1          | X            | X             | X             | -             | X             | X              | X             |
| 1:14 PM            | 99.0           | 105.1          | 6387         | 6540          | 6392          | -             | 6439          | 6681           | 6844          |
| 1:15 PM            | 129.0          | 134.1          | X (207       | X             | X (2) 4       | -             | X             | X              | X             |
| 1:19 PM            | 120.0          | 129.4          | 6297         | 6460          | 6314          | -             | 6404          | 6652           | 6827          |
| 1:20 PM            | 144.0          | 150.4          | X (241       | X (400)       | X (2/2        | -             | X (200        | X (62)         | X (0.1.5      |
| 1:24 PM            | 135.0          | 144.9          | 6241         | 6409          | 6262          | -             | 6380          | 6631           | 6815          |
| 1:25 PM<br>1:29 PM | 158.8<br>150.0 | 168.7<br>163.1 | 6179         | X<br>6252     | 6205          | -             | 6355          | 6610           | X<br>6904     |
| 1:30 PM            | 173.5          | 189.6          | X            | 6352          | x             | -             |               | x              | 6804<br>x     |
| 1:34 PM            | 164.7          | 182.9          | 6112         | 6294          | 6143          | -             | 6325          | 6587           | 6791          |
| 1:35 PM            | 188.2          | 207.8          | X            | X             | X             | -             | X             | x              | X             |
| 1:39 PM            | 179.4          | 200.2          | 6052         | 6238          | 6087          | _             | 6303          | 6566           | 6782          |
| 1:40 PM            | 202.9          | 229.7          | X            | X             | x             | -             | X             | x              | X             |
| 1:44 PM            | 194.1          | 221.5          | 5980         | 6173          | 6011          | _             | 6271          | 6542           | 6769          |
| 1:45 PM            | 217.6          | 250.4          | x            | x             | X             | _             | X             | x              | X             |
| 1:49 PM            | 208.8          | 241.0          | 5912         | 6112          | 5950          | _             | 6234          | 6512           | 6755          |
| 1:50 PM            | 235.3          | 270.9          | X            | X             | x             | _             | X             | x              | X             |
| 1:54 PM            | 250.0          | 261.8          | 5834         | 6042          | 5876          | -             | 6206          | 6493           | 6746          |
| 1:55 PM            | 250.0          | 287.1          | x            | x             | x             | -             | x             | x              | X             |
| 1:59 PM            | 238.2          | 278.3          | 5777         | 5989          | 5816          | -             | 6179          | 6472           | 6735          |
| 2:00 PM            | 268.4          | 315.2          | x            | x             | х             | -             | x             | x              | x             |
| 2:04 PM            | 256.1          | 301.0          | 5696         | 5910          | 5730          | -             | 6139          | 6443           | 6720          |
| 2:05 PM            | 280.6          | 327.3          | x            | X             | х             | -             | X             | х              | X             |
| 2:09 PM            | 266.8          | 315.4          | 5643         | 5862          | 5676          | -             | 6115          | 6424           | 6709          |
| 2:10 PM            | 292.8          | 341.9          | x            | x             | X             | -             | x             | x              | x             |
| 2:14 PM            | 277.5          | 327.1          | 5604         | 5822          | 5632          | -             | 6093          | 6409           | 6700          |
| 2:15 PM            | 317.0          | 369.6          | x            | x             | x             | -             | x             | x              | x             |
| 2:19 PM            | 299.0          | 354.0          | 5501         | 5730          | 5530          | -             | 6049          | 6374           | 6679          |
| 2:20 PM            | 326.0          | 380.4          | x            | x             | x             | -             | x             | x              | X             |
| 2:24 PM            | 308.0          | 365.0          | 5452         | 5686          | 5481          | -             | 6026          | 6357           | 6664          |
| 2:25 PM            | 347.0          | 434.8          | x            | X             | x             | -             | x             | x              | X             |
| 2:29 PM            | 323.0          | 383.4          | 5389         | 5628          | 5414          | -             | 5993          | 6330           | 6642          |
| 2:30 PM            | 358.8          | 424.9          | x            | x             | x             | -             | x             | x              | X             |
| 2:31 PM            | 329.0          | 391.1          | 5348         | 5591          | 5372          | -             | 5971          | 6311           | 6624          |
| 2:35 PM            | 370.6          | 435.8          | X            | X             | x             | -             | X             | x              | X             |
| 2:39 PM            | 347.0          | 416.4          | 5249         | 5505          | 5171          | -             | 5911          | 6262           | 6583          |
| 2:40 PM            | 311.0          | 436.6          | X            | X             | X             | -             | X             | X              | X             |
| 2:44 PM            | 347.0          | 352.4          | 5148         | 5422          | 5092          | -             | 5919          | 6264           | 6579          |
| 2:45 PM            | 287.9          | 352.4          | X            | X             | X             | -             | X             | X              | X             |
| 2:49 PM            | 289.8          | 353.0          | 5440         | 5655          | 5366          | -             | 5920          | 6266           | 6578          |
| 2:50 PM            | 214.7          | 263.9          | X            | X             | X             | -             | X             | X              | X             |
| 2:54 PM            | 214.7          | 265.5          | 5725         | 5903          | 5582          | -             | 5974          | 6301           | 6594          |
| 2:55 PM            | 144.0          | 171.7          | X            | X (102        | X 500.6       | -             | X             | X (200         | X             |
| 2:59 PM            | 141.0          | 174.5          | 6033         | 6182          | 5886          | -             | 6079          | 6380           | 6639          |
| 3:00 PM            | 72.0           | 86.9           | X (22.4      | X             | X             | -             | X (200        | X              | X             |
| 3:04 PM            | 78.0           | 90.2           | 6334         | 6468          | 6180          | -             | 6200          | 6468           | 6668          |
| 3:05 PM            | 0.0            | 4.1            | X            | X (780)       | X (522        | -             | X (200        | X (622         | X (775        |
| 3:09 PM            | 0.0            | 4.0            | 6694         | 6789          | 6533          | -             | 6390          | 6632           | 6775          |

**Table I-3.** Load – displacement measurements during axial compression loading test of pile C-2

| PILE DIAMETER:  |                      |             | CONTRACTOR:                |             | EL & CO     | <b>A</b>                                  |             | PILE ID:       |              |
|-----------------|----------------------|-------------|----------------------------|-------------|-------------|-------------------------------------------|-------------|----------------|--------------|
| PILE LENGTH:    | <u>60 FT</u>         |             | PILE TYPE :                | ACIP        |             | P. C.                                     |             | JACK S/N:      | WB823        |
| LOAD TEST TYPE: | COMPRESSION          |             | WEATHER:                   | WINDY/SUNNY | 19          | 59                                        |             | GAUGE S/N:     | WB1285       |
| BERKEL REP:     | Tanner Swafford      |             |                            |             | Of the      | N. S. |             | LOAD CELL S/N: | 1021728      |
|                 |                      |             |                            |             | ACTOR       |                                           |             | BEGIN DATE:    | 11/30/2016   |
|                 |                      |             |                            |             |             |                                           |             | END DATE:      | 11/30/2016   |
| TIME            | JACK                 |             | LOAI                       | O CELL      |             |                                           | PILE HEAD I |                |              |
| TIVIE           | PRESSURE (psi)       | LOAD (tons) | (dgs)                      | Load (tons) | DIAL 1 (in) | DIAL 2 (in)                               | DIAL 3 (in) | DIAL 4 (in)    | AVERAGE (in) |
|                 | 0 / 0                | 0.0         | 367 / 448                  | 0.0         | 0.000       | 0.000                                     | 0.000       | 0.000          | 0.000        |
| 3:58 PM         | 160 / 150            | 14.1        | 472 / 499                  | 9.8         | 0.003       | 0.004                                     | 0.002       | 0.002          | 0.003        |
| 4:02 PM         | 160 / 110            | 10.3        | 472 / 493                  | 8.7         | 0.004       | 0.005                                     | 0.003       | 0.004          | 0.004        |
| 4:03 PM         | 320 / 300            | 28.1        | 577 / 558                  | 21.2        | 0.016       | 0.018                                     | 0.016       | 0.018          | 0.017        |
| 4:07 PM         | 320 / 300            | 28.1        | 577 / 551                  | 19.8        | 0.019       | 0.019                                     | 0.021       | 0.023          | 0.021        |
| 4:08 PM         | 480 / 490            | 46.0        | 682 / 624                  | 33.8        | 0.030       | 0.030                                     | 0.031       | 0.034          | 0.031        |
| 4:12 PM         | 480 / 450            | 42.2        | 682 / 613                  | 31.7        | 0.031       | 0.031                                     | 0.032       | 0.036          | 0.033        |
| 4:13 PM         | 640 / 650            | 61.3        | 787 / 704                  | 48.4        | 0.052       | 0.053                                     | 0.050       | 0.052          | 0.052        |
| 4:17 PM         | 640 / 625            | 58.9        | 787 / 693                  | 46.7        | 0.054       | 0.055                                     | 0.051       | 0.052          | 0.053        |
| 4:18 PM         | 800 / 800            | 75.6        | 892 / 757                  | 56.4        | 0.069       | 0.070                                     | 0.062       | 0.064          | 0.066        |
| 4:22 PM         | 800 / 800            | 75.6        | 892 / 744                  | 54.5        | 0.074       | 0.074                                     | 0.065       | 0.066          | 0.070        |
| 4:23 PM         | 950 / 950            | 90.0        | 977 / 804                  | 63.6        | 0.090       | 0.092                                     | 0.082       | 0.083          | 0.087        |
| 4:27 PM         | 950 / 900            | 85.2        | 977 / 792                  | 61.8        | 0.094       | 0.095                                     | 0.085       | 0.085          | 0.090        |
| 4:28 PM         | 1100 / 1100          | 105.0       | 1063 / 877                 | 74.7        | 0.122       | 0.125                                     | 0.110       | 0.108          | 0.116        |
| 4:32 PM         | 1100 / 1100          | 105.0       | 1063 / 861                 | 72.3        | 0.127       | 0.130                                     | 0.110       | 0.110          | 0.110        |
| 4:33 PM         | 1250 / 1250          | 120.0       | 1149 / 924                 | 81.9        | 0.144       | 0.146                                     | 0.129       | 0.126          | 0.136        |
| 4:37 PM         | 1250 / 1200          | 115.0       | 1149 / 908                 | 79.5        | 0.150       | 0.152                                     | 0.131       | 0.128          | 0.140        |
| 4:38 PM         | 1400 / 1500          | 145.0       | 1235 / 1002                | 94.4        | 0.190       | 0.193                                     | 0.172       | 0.162          | 0.179        |
| 4:42 PM         | 1400 / 1425          | 137.5       | 1235 / 994                 | 93.0        | 0.198       | 0.193                                     | 0.172       | 0.173          | 0.179        |
| 4:43 PM         | 1550 / 1650          | 160.0       | 1321 / 1076                | 107.3       | 0.198       | 0.227                                     | 0.178       | 0.200          | 0.187        |
| 4:47 PM         | 1550 / 1575          | 152.5       | 1321 / 1070                | 104.0       | 0.221       | 0.227                                     | 0.207       | 0.206          | 0.214        |
| 4:48 PM         | 1700 / 1800          | 175.0       | 1395 / 1130                | 116.7       | 0.251       | 0.257                                     | 0.211       | 0.230          | 0.244        |
| 4:52 PM         | 1700 / 1700          | 165.0       | 1395 / 1104                | 112.2       | 0.264       | 0.267                                     | 0.243       | 0.236          | 0.253        |
| 4:53 PM         | 1850 / 1950          | 190.0       | 1470 / 1200                | 128.9       | 0.296       | 0.300                                     | 0.278       | 0.268          | 0.286        |
| 4:57 PM         | 1850 / 1900          | 185.0       | 1470 / 1178                | 125.1       | 0.304       | 0.309                                     | 0.284       | 0.275          | 0.293        |
| 4:58 PM         | 2000 / 2100          | 205.0       | 1545 / 1262                | 140.2       | 0.334       | 0.341                                     | 0.315       | 0.305          | 0.324        |
| 5:02 PM         | 2000 / 2025          | 197.5       | 1545 / 1238                | 135.6       | 0.342       | 0.347                                     | 0.321       | 0.309          | 0.330        |
| 5:03 PM         | 2150 / 2225          | 217.5       | 1619 / 1298                | 147.1       | 0.364       | 0.371                                     | 0.344       | 0.332          | 0.353        |
| 5:07 PM         | 2150 / 2175          | 217.5       | 1619 / 1281                | 143.8       | 0.375       | 0.371                                     | 0.351       | 0.340          | 0.362        |
| 5:08 PM         | 2300 / 2400          | 235.0       | 1694 / 1356                | 158.2       | 0.400       | 0.409                                     | 0.380       | 0.365          | 0.389        |
| 5:12 PM         | 2300 / 2300          | 225.0       | 1694 / 1334                | 154.0       | 0.412       | 0.420                                     | 0.388       | 0.374          | 0.399        |
| 5:13 PM         | 2450 / 2550          | 250.0       | 1769 / 1416                | 169.7       | 0.412       | 0.420                                     | 0.420       | 0.406          | 0.430        |
| 5:17 PM         | 2450 / 2475          | 242.5       | 1769 / 1388                | 164.3       | 0.442       | 0.452                                     | 0.420       | 0.417          | 0.430        |
| 5:18 PM         | 2600 / 2700          | 265.0       | 1843 / 1467                | 179.4       | 0.436       | 0.495                                     | 0.460       | 0.445          | 0.442        |
| 5:22 PM         | 2600 / 2600          | 255.0       | 1843 / 1439                | 179.4       | 0.485       | 0.493                                     | 0.469       | 0.443          | 0.471        |
| 5:23 PM         | 2750 / 2850          | 280.0       | 1918 / 1521                | 190.2       | 0.493       | 0.548                                     | 0.469       | 0.433          | 0.481        |
| 5:27 PM         | 2750 / 2800          | 275.0       | 1918 / 1506                | 187.2       | 0.548       | 0.548                                     | 0.520       | 0.493          | 0.532        |
| 5:28 PM         | 2900 / 3000          | 295.0       | 1993 / 1596                | 205.3       | 0.548       | 0.595                                     | 0.545       | 0.537          | 0.565        |
| 5:32 PM         | 2900 / 3000          | 285.0       | 1993 / 1549                | 195.9       | 0.583       | 0.595                                     | 0.570       | 0.551          | 0.584        |
| 5:33 PM         | 3050 / 3150          | 310.0       | 2068 / 1645                | 215.2       | 0.638       | 0.648                                     | 0.605       | 0.587          | 0.584        |
| 5:37 PM         | 3050 / 3025          | 297.5       | 2068 / 1607                | 207.5       | 0.654       | 0.660                                     | 0.620       | 0.600          | 0.620        |
| 5:38 PM         | 3200 / 3275          | 322.5       | 2143 / 1689                | 224.0       | 0.703       | 0.713                                     |             |                | 0.683        |
| 5:42 PM         | 3200 / 32/3          | 310.0       | 2143 / 1653                | 216.8       | 0.703       | 0.713                                     | 0.668       | 0.648<br>0.658 | 0.696        |
| 5:43 PM         | 3350 / 3425          | 337.5       | 2219 / 1763                | 238.9       | 0.718       | 0.728                                     | 0.080       | 0.638          | 0.090        |
| 5:47 PM         | 3350 / 3423          | 325.0       | 2219 / 1703                | 229.6       | 0.799       | 0.793                                     | 0.747       | 0.724          | 0.777        |
| 5:48 PM         | 3500 / 3600          | 355.0       | 2295 / 1845                | 255.3       | 0.799       | 0.880                                     | 0.760       | 0.737          | 0.860        |
| 5:52 PM         | 3500 / 3500          | 345.0       | 2295 / 1787                | 243.7       | 0.883       | 0.922                                     | 0.867       | 0.843          | 0.886        |
| 5:53 PM         | 3650 / 3800          | 375.0       | 2371 / 1917                | 269.8       | 1.015       | 1.030                                     | 0.807       | 0.950          | 0.993        |
| 5:57 PM         | 3650 / 3650          | 360.0       | 2371 / 1917                | 256.5       | 1.013       | 1.050                                     | 0.973       | 0.965          | 1.011        |
| 5:58 PM         | 3800 / 3800          | 375.0       | 2447 / 1904                | 267.2       | 1.125       | 1.135                                     | 1.080       | 1.052          | 1.098        |
| 6:02 PM         | 3800 / 3650          | 360.0       | 2447 / 1862                | 258.8       | 1.138       | 1.147                                     | 1.089       | 1.060          | 1.109        |
| 6:03 PM         | 3950 / 4100          | 405.0       | 2523 / 1998                | 286.0       | 1.138       | 1.314                                     | 1.250       | 1.222          | 1.271        |
| 6:07 PM         | 3950 / 3800          | 375.0       | 2523 / 1998                | 267.4       | 1.315       | 1.314                                     | 1.262       | 1.233          | 1.271        |
| 6:12 PM         | 4100 / 4200          | 415.0       | 2599 / 2040                | 294.4       | 1.513       | 1.542                                     | 1.470       | 1.443          | 1.496        |
| 6:16 PM         | 4100 / 4000          | 395.0       | 2599 / 1986                | 283.6       | 1.550       | 1.542                                     | 1.484       | 1.443          | 1.512        |
| 6:17 PM         | 4250 / 4350          | 430.0       | 2675 / 2091                | 304.6       | 1.829       | 1.845                                     | 1.770       | 1.738          | 1.796        |
| 6:21 PM         | 4250 / 4125          | 407.5       | 2675 / 2036                | 293.6       | 1.860       | 1.845                                     | 1.770       | 1.760          | 1.822        |
| 6:22 PM         | 4400 / 4500          | 445.0       | 2751 / 2141                | 314.6       | 2.080       | 2.199                                     | 2.076       | 2.053          | 2.102        |
| 6:26 PM         | 4400 / 4300          | 425.0       | 2751 / 2095                | 305.4       | 2.080       | 2.199                                     | 2.076       | 2.060          | 2.102        |
| 6:48 PM         | 3530 / 3550          | 350.0       | 2310 / 2036                | 293.6       | 2.080       | 2.199                                     | 2.076       | 2.060          | 2.104        |
| 6:52 PM         | 3530 / 3550          | 350.0       | 2310 / 2030                | 293.0       | 2.080       | 2.199                                     | 2.076       | 2.060          | 2.104        |
| 6:53 PM         | 2660 / 2650          | 260.0       | 1873 / 1703                | 226.8       | 2.080       | 2.197                                     | 2.076       | 2.060          | 2.103        |
| 6:57 PM         | 2660 / 2650          | 260.0       | 1873 / 1708                | 227.8       | 2.080       | 2.197                                     | 2.076       | 2.060          | 2.103        |
| 6:58 PM         | 1790 / 1800          | 175.0       | 1440 / 1373                | 161.4       | 2.080       | 2.197                                     | 2.076       | 2.060          | 2.103        |
|                 | 1790 / 1800          |             |                            |             |             |                                           |             |                |              |
| 7:02 PM         |                      | 175.0       | 1440 / 1379                | 162.6       | 2.080       | 2.197                                     | 2.076       | 2.060          | 2.103        |
| 7:03 PM         | 920 / 900            | 85.2        | 960 / 984                  | 91.2        | 2.080       | 2.197                                     | 2.076       | 2.060          | 2.103        |
| 7:07 PM         | 920 / 900            | 85.2        | 960 / 986                  | 91.6        | 2.080       | 2.197                                     | 2.076       | 2.058          | 2.103        |
| 7:08 PM         | 0/0                  | 0.0         | 367 / 406                  | 0.0         | 1.197       | 2.045                                     | 2.040       | 2.021          | 1.826        |
| 7:12 PM         | 0 / 0  Target/Actual | 0.0         | 367 / 402<br>Target/Actual | 0.0         | 1.197       | 2.045                                     | 2.040       | 2.021          | 1.826        |

**Table I-4.** Strain gauge readings during axial compression loading test of pile C-2

| PILE DIAMETER:<br>PILE LENGTH:<br>LOAD TEST TYPE:<br>BERKEL REP: | <u>60 FT</u>   |                | CONTRACTOR<br>PILE TYPE :<br>WEATHER: | BERKEL<br>ACIP<br>WINDY/SUNNY | 19 S          |               | PILE ID: JACK S/N: GAUGE S/N: LOAD CELL S/N: BEGIN DATE: END DATE: | WB823<br>WB1285<br>1021728<br>11/30/2016 |
|------------------------------------------------------------------|----------------|----------------|---------------------------------------|-------------------------------|---------------|---------------|--------------------------------------------------------------------|------------------------------------------|
|                                                                  |                |                |                                       |                               | STRAIN GAGE   | READINGS      | DI ID DI II DI                                                     | 11/00/2010                               |
| TIME                                                             | LOAD (tons)    | Load (tons)    | 10' (1632098)                         | 20' (1632096)                 | 30' (1632093) | 40' (1632092) | 50' (1632090)                                                      | 58' (1631527)                            |
|                                                                  | 0.0            | 0.0            | 6694                                  | 6652                          | 6455          | 6711          | 6702                                                               | 6730                                     |
| 3:58 PM                                                          | 14.1           | 9.8            | X                                     | X                             | X             | x             | x                                                                  | X                                        |
| 4:02 PM                                                          | 10.3           | 8.7            | 6664                                  | 6632                          | 6437          | 6685          | 6697                                                               | 6729                                     |
| 4:03 PM                                                          | 28.1           | 21.2           | X                                     | X                             | X             | X             | x                                                                  | X                                        |
| 4:07 PM                                                          | 28.1           | 19.8           | 6643                                  | 6618                          | 6424          | 6653          | 6693                                                               | 6728                                     |
| 4:08 PM                                                          | 46.0           | 33.8           | X                                     | X                             | X             | X             | х                                                                  | X                                        |
| 4:12 PM                                                          | 42.2           | 31.7           | 6618                                  | 6601                          | 6406          | 6608          | 6686                                                               | 6724                                     |
| 4:13 PM                                                          | 61.3           | 48.4           | X                                     | X                             | X (202        | X             | X                                                                  | X (722                                   |
| 4:17 PM                                                          | 58.9           | 46.7           | 6587                                  | 6577                          | 6382          | 6554          | 6677                                                               | 6723                                     |
| 4:18 PM<br>4:22 PM                                               | 75.6           | 56.4<br>54.5   | x<br>6565                             | X (561)                       | 6364          | X (522        | x<br>6669                                                          | X (710                                   |
| 4:22 PM<br>4:23 PM                                               | 75.6<br>90.0   | 63.6           |                                       | 6561                          |               | 6522          |                                                                    | 6718                                     |
| 4:27 PM                                                          | 85.2           | 61.8           | x<br>6543                             | 6545                          | 6346          | 6498          | x<br>6661                                                          | 6712                                     |
| 4:28 PM                                                          | 105.0          | 74.7           | X                                     | X                             | X             | V498          | x                                                                  | X                                        |
| 4:32 PM                                                          | 105.0          | 72.3           | 6513                                  | 6521                          | 6321          | 6465          | 6650                                                               | 6703                                     |
| 4:33 PM                                                          | 120.0          | 81.9           | X                                     | X                             | X             | X             | x                                                                  | x                                        |
| 4:37 PM                                                          | 115.0          | 79.5           | 6493                                  | 6505                          | 6306          | 6446          | 6642                                                               | 6699                                     |
| 4:38 PM                                                          | 145.0          | 94.4           | X                                     | x                             | x             | X             | x                                                                  | X                                        |
| 4:42 PM                                                          | 137.5          | 93.0           | 6454                                  | 6474                          | 6274          | 6409          | 6629                                                               | 6690                                     |
| 4:43 PM                                                          | 160.0          | 107.3          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 4:47 PM                                                          | 152.5          | 104.0          | 6429                                  | 6454                          | 6252          | 6383          | 6619                                                               | 6684                                     |
| 4:48 PM                                                          | 175.0          | 116.7          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 4:52 PM                                                          | 165.0          | 112.2          | 6406                                  | 6437                          | 6234          | 6361          | 6612                                                               | 6679                                     |
| 4:53 PM                                                          | 190.0          | 128.9          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 4:57 PM                                                          | 185.0          | 125.1          | 6374                                  | 6412                          | 6209          | 6329          | 6601                                                               | 6672                                     |
| 4:58 PM                                                          | 205.0          | 140.2          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 5:02 PM                                                          | 197.5          | 135.6          | 6348                                  | 6389                          | 6187          | 6301          | 6592                                                               | 6666                                     |
| 5:03 PM                                                          | 217.5          | 147.1          | x                                     | X                             | x             | x             | x                                                                  | X                                        |
| 5:07 PM                                                          | 212.5          | 143.8          | 6328                                  | 6376                          | 6172          | 6281          | 6585                                                               | 6663                                     |
| 5:08 PM                                                          | 235.0          | 158.2          | X                                     | X                             | x             | x             | x                                                                  | X                                        |
| 5:12 PM                                                          | 225.0          | 154.0          | 6303                                  | 6356                          | 6152          | 6254          | 6573                                                               | 6659                                     |
| 5:13 PM                                                          | 250.0          | 169.7          | X                                     | X                             | X             | x             | х                                                                  | X                                        |
| 5:17 PM                                                          | 242.5          | 164.3          | 6277                                  | 6334                          | 6131          | 6225          | 6568                                                               | 6651                                     |
| 5:18 PM                                                          | 265.0          | 179.4          | X                                     | X                             | X             | X             | X                                                                  | X                                        |
| 5:22 PM                                                          | 255.0          | 174.1          | 6257                                  | 6318                          | 6114          | 6201          | 6560                                                               | 6648                                     |
| 5:23 PM                                                          | 280.0          | 190.2          | X                                     | X (20.5                       | X             | X             | X                                                                  | X                                        |
| 5:27 PM                                                          | 275.0          | 187.2          | 6226                                  | 6295                          | 6089          | 6166          | 6550                                                               | 6642                                     |
| 5:28 PM                                                          | 295.0          | 205.3<br>195.9 | x<br>6204                             | 6278                          | 6073          | 6141          | 6544                                                               | 6635                                     |
| 5:32 PM<br>5:33 PM                                               | 285.0<br>310.0 | 215.2          |                                       | X                             | x             |               |                                                                    |                                          |
| 5:37 PM                                                          | 297.5          | 207.5          | 6175                                  | 6256                          | 6052          | 6111          | 6535                                                               | 6629                                     |
| 5:38 PM                                                          | 322.5          | 224.0          | x                                     | x                             | X             | X             | x                                                                  | X                                        |
| 5:42 PM                                                          | 310.0          | 216.8          | 6153                                  | 6239                          | 6036          | 6087          | 6528                                                               | 6622                                     |
| 5:43 PM                                                          | 337.5          | 238.9          | X                                     | x                             | x             | x             | x                                                                  | x                                        |
| 5:47 PM                                                          | 325.0          | 229.6          | 6124                                  | 6217                          | 6016          | 6058          | 6518                                                               | 6613                                     |
| 5:48 PM                                                          | 355.0          | 255.3          | х                                     | x                             | х             | x             | х                                                                  | x                                        |
| 5:52 PM                                                          | 345.0          | 243.7          | 6087                                  | 6192                          | 5992          | 6025          | 6502                                                               | 6601                                     |
| 5:53 PM                                                          | 375.0          | 269.8          | х                                     | x                             | x             | x             | x                                                                  | x                                        |
| 5:57 PM                                                          | 360.0          | 256.5          | 6052                                  | 6170                          | 5973          | 6002          | 6484                                                               | 6589                                     |
| 5:58 PM                                                          | 375.0          | 267.2          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 6:02 PM                                                          | 360.0          | 258.8          | 6046                                  | 6163                          | 5966          | 5994          | 6472                                                               | 6582                                     |
| 6:03 PM                                                          | 405.0          | 286.0          | x                                     | x                             | x             | x             | x                                                                  | x                                        |
| 6:07 PM                                                          | 375.0          | 267.4          | 6008                                  | 6135                          | ** n/a **     | 5966          | 6451                                                               | 6564                                     |
| 6:12 PM                                                          | 415.0          | 294.4          | X<br>5007                             | X (120)                       | X 5022        | X 5502        | X (422                                                             | X (5.4)                                  |
| 6:16 PM                                                          | 395.0          | 283.6          | 5987                                  | 6120                          | 5933          | 5592          | 6433                                                               | 6546                                     |
| 6:17 PM                                                          | 430.0          | 304.6          | X<br>5062                             | X<br>6000                     | X<br>5017     | X<br>5021     | X<br>6412                                                          | 6525                                     |
| 6:21 PM<br>6:22 PM                                               | 407.5<br>445.0 | 293.6          | 5962                                  | 6099                          | 5917          | 5921          | 6413                                                               | 6525                                     |
| 6:22 PM<br>6:26 PM                                               | 445.0          | 314.6<br>305.4 | 5931                                  | 6075                          | 5896          | 5892          | 6393                                                               | 6497                                     |
| 6:48 PM                                                          | 350.0          | 293.6          | X X                                   | x                             | X             | 3892<br>X     | x                                                                  | X                                        |
| 6:52 PM                                                          | 350.0          | 293.0          | 5958                                  | 6098                          | 5916          | 5903          | 6396                                                               | 6498                                     |
| 6:53 PM                                                          | 260.0          | 226.8          | X                                     | X                             | X             | 3903<br>X     | x                                                                  | X                                        |
| 6:57 PM                                                          | 260.0          | 227.8          | 6097                                  | 6185                          | 5985          | 5972          | 6423                                                               | 6513                                     |
| 6:58 PM                                                          | 175.0          | 161.4          | x                                     | x                             | x             | X             | x                                                                  | X                                        |
| 7:02 PM                                                          | 175.0          | 162.6          | 6249                                  | 6292                          | 6078          | 6070          | 6463                                                               | 6534                                     |
| 7:03 PM                                                          | 85.2           | 91.2           | x                                     | x                             | х             | x             | x                                                                  | X                                        |
| 7:07 PM                                                          | 85.2           | 91.6           | 6438                                  | 6447                          | 6233          | 6239          | 6545                                                               | 6598                                     |
| 7:08 PM                                                          | 0.0            | 0.0            | x                                     | X                             | x             | x             | x                                                                  | X                                        |
|                                                                  | 0.0            | 0.0            | 6635                                  | 6591                          | 6365          | 6431          | 6615                                                               | 6647                                     |

## **APPENDIX J**

## TENSION LOAD TEST SETUP AND TEST RESULTS

Table J-1. Load – displacement measurements during axial tension loading test of pile T-1

| PILE DIAMETER:                 |                            |                | CONTRACTOR:<br>PILE TYPE :   |                     | MEL & C        | OMP            |                |                |                        |       | PILE ID:                |            |
|--------------------------------|----------------------------|----------------|------------------------------|---------------------|----------------|----------------|----------------|----------------|------------------------|-------|-------------------------|------------|
| PILE LENGTH:<br>DAD TEST TYPE: |                            |                | WEATHER:                     | ACIP<br>WINDY/SUNNY | E CER          | 3              |                |                |                        |       | JACK S/N:<br>GAUGE S/N: |            |
|                                | Tanner Swafford            |                | WEATHER.                     | WIND1/SUNN1         | 8              | Ty .           |                |                |                        |       | D CELL S/N:             |            |
| DERKEE KEI                     | Tanner Swanord             |                |                              |                     | TRACT          | ORSIL          |                |                |                        |       | EGIN DATE:              |            |
|                                |                            |                |                              |                     |                |                |                |                |                        |       | END DATE:               |            |
|                                | JACK                       |                | LOA                          | D CELL              |                | PILE           | HEAD MO        | VEMENT         |                        |       | Movement                |            |
| TIME                           | PRESSURE (psi)             | LOAD (tons)    | (dgs)                        | Load (tons)         | Dial 1 (in)    | Dial 2 (in)    | Dial 3 (in)    | Dial 4 (in)    | Dial Average           | R1    | R5                      | CB reading |
| 11:20                          | 0/0                        | 0.0            | -538 / -540                  | 0.0                 | 0.000          | 0.000          | 0.000          | 0.000          | 0.000                  |       |                         | 0.75       |
| 11:20                          | 186 / 275                  | 14.7           | -437 / -417                  | 12.0                | 0.002          | 0.000          | 0.000          | 0.002          | 0.002                  |       |                         |            |
| 11:24                          | 186 / 275                  | 14.7           | -437 / -422                  | 11.5                | 0.002          | 0.001          | 0.002          | 0.003          | 0.003                  |       |                         |            |
| 11:25                          | 373 / 375                  | 20.1           | -336 / -364                  | 17.2                | 0.005          | 0.004          | 0.005          | 0.006          | 0.006                  |       |                         |            |
| 11:29                          | 373 / 375                  | 20.1           | -336 / -369                  | 16.7                | 0.006          | 0.007          | 0.009          | 0.007          | 0.007                  |       |                         | 0.78       |
| 11:30                          | 559 / 550                  | 29.5           | -235 / -255                  | 28.0                | 0.011          | 0.010          | 0.014          | 0.013          | 0.012                  |       |                         |            |
| 11:34                          | 559 / 500                  | 26.8           | -235 / -260                  | 27.5                | 0.013          | 0.012          | 0.013          | 0.014          | 0.014                  |       |                         |            |
| 11:35                          | 746 / 750<br>746 / 725     | 40.2<br>38.9   | -134 / -121<br>-134 / -136   | 41.3<br>39.8        | 0.019          | 0.019          | 0.021          | 0.020          | 0.020<br>0.020         |       |                         | 0.01       |
| 11:39<br>11:40                 | 933 / 950                  | 51.0           | -33 / 16                     | 54.9                | 0.020          | 0.020          | 0.021          | 0.020          | 0.020                  | 0.012 | 0.010                   | 0.81       |
| 11:44                          | 933 / 900                  | 48.2           | -33 / 4                      | 53.7                | 0.031          | 0.029          | 0.033          | 0.038          | 0.035                  | 0.012 | 0.010                   |            |
| 11:45                          | 1100 / 1125                | 61.5           | 67 / 95                      | 62.7                | 0.075          | 0.095          | 0.096          | 0.090          | 0.083                  |       |                         |            |
| 11:49                          | 1100 / 1050                | 57.0           | 67 / 76                      | 60.8                | 0.079          | 0.089          | 0.101          | 0.091          | 0.085                  |       |                         |            |
| 11:50                          | 1266 / 1250                | 69.0           | 168 / 205                    | 73.7                | 0.112          | 0.122          | 0.138          | 0.126          | 0.119                  |       |                         | 0.94       |
| 11:54                          | 1266 / 1200                | 66.0           | 168 / 171                    | 70.3                | 0.119          | 0.129          | 0.140          | 0.130          | 0.125                  |       |                         |            |
| 11:55                          | 1433 / 1500                | 84.0           | 269 / 358                    | 88.9                | 0.185          | 0.195          | 0.210          | 0.200          | 0.193                  |       |                         |            |
| 11:59                          | 1433 / 1425                | 79.5           | 269 / 329                    | 86.0                | 0.190          | 0.200          | 0.214          | 0.204          | 0.197                  |       |                         |            |
| 12:00                          | 1600 / 1700                | 96.0           | 369 / 401                    | 93.1                | 0.240          | 0.250          | 0.266          | 0.260          | 0.250                  |       |                         | 1.06       |
| 12:04                          | 1600 / 1600                | 90.0           | 369 / 446                    | 97.6                | 0.249          | 0.252          | 0.270          | 0.264          | 0.257                  |       |                         |            |
| 12:05                          | 1767 / 1800                | 102.0          | 470 / 552                    | 108.3               | 0.280          | 0.286          | 0.305          | 0.300          | 0.290                  | 0.028 | 0.023                   |            |
| 12:09                          | 1767 / 1750                | 99.0           | 470 / 537                    | 106.8               | 0.282          | 0.288          | 0.308          | 0.301          | 0.292                  |       |                         | 1.13       |
| 12:10                          | 1933 / 2000<br>1933 / 1950 | 114.0          | 568 / 696                    | 123.0               | 0.340          | 0.341          | 0.366          | 0.364          | 0.352                  |       |                         |            |
| 12:14<br>12:15                 | 2100 / 2250                | 111.0<br>129.0 | 568 / 671<br>666 / 846       | 120.4<br>138.2      | 0.348          | 0.351          | 0.375<br>0.456 | 0.368          | 0.358<br>0.437         |       |                         |            |
| 12:15                          | 2100 / 2250                | 129.0          | 666 / 824                    | 136.0               | 0.423          | 0.428          | 0.456          | 0.450          | 0.437                  |       |                         |            |
| 12:20                          | 2266 / 2325                | 133.5          | 765 / 917                    | 145.4               | 0.468          | 0.470          | 0.498          | 0.493          | 0.441                  |       |                         |            |
| 12:24                          | 2266 / 2250                | 129.0          | 765 / 883                    | 142.0               | 0.470          | 0.473          | 0.500          | 0.492          | 0.481                  |       |                         |            |
| 12:25                          | 2433 / 2500                | 144.0          | 863 / 1047                   | 158.4               | 0.537          | 0.538          | 0.566          | 0.562          | 0.550                  |       |                         |            |
| 12:29                          | 2433 / 2450                | 141.0          | 863 / 1009                   | 154.7               | 0.540          | 0.538          | 0.568          | 0.563          | 0.552                  |       |                         | 1.66       |
| 12:30                          | 2600 / 2700                | 155.9          | 962 / 1154                   | 169.1               | 0.593          | 0.593          | 0.627          | 0.625          | 0.609                  | 0.035 | 0.039                   |            |
| 12:34                          | 2600 / 2600                | 150.0          | 962 / 1108                   | 164.5               | 0.602          | 0.602          | 0.633          | 0.629          | 0.616                  |       |                         |            |
| 12:35                          | 2770 / 2850                | 164.7          | 1062 / 1249                  | 178.5               | 0.662          | 0.659          | 0.693          | 0.693          | 0.678                  |       |                         |            |
| 12:39                          | 2770 / 2725                | 157.4          | 1062 / 1204                  | 174.1               | 0.664          | 0.664          | 0.696          | 0.695          | 0.680                  |       |                         |            |
| 12:40                          | 2940 / 3050                | 176.5          | 1163 / 1377                  | 191.3               | 0.754          | 0.748          | 0.781          | 0.783          | 0.769                  |       |                         |            |
| 12:44                          | 2940 / 2950                | 170.6          | 1163 / 1329                  | 186.5               | 0.758          | 0.754          | 0.788          | 0.787          | 0.773                  |       |                         | 1.78       |
| 12:45                          | 3110 / 3200                | 185.3          | 1263 / 1495                  | 203.0               | 0.862          | 0.854          | 0.892          | 0.892          | 0.877                  |       |                         |            |
| 12:49<br>12:50                 | 3110 / 3125                | 180.9<br>194.1 | 1263 / 1453                  | 198.8<br>212.8      | 0.925          | 0.918          | 0.950          | 0.951          | 0.921<br>0.938         |       |                         |            |
| 12:54                          | 3280 / 3350<br>3280 / 3250 | 188.2          | 1364 / 1592<br>1364 / 1551   | 208.7               | 0.923          | 0.918          | 0.953          | 0.951          | 0.938                  |       |                         |            |
| 12:55                          | 3450 / 3550                | 205.9          | 1465 / 1726                  | 226.4               | 1.010          | 0.918          | 1.030          | 1.040          | 1.025                  | 0.054 | 0.039                   | 2.00       |
| 12:59                          | 3450 / 3450                | 200.0          | 1465 / 1678                  | 221.5               | 1.015          | 1.006          | 1.038          | 1.045          | 1.030                  | 0.054 | 0.037                   | 2.00       |
| 1:00                           | 3620 / 3750                | 217.6          | 1564 / 1841                  | 238.0               | 1.103          | 1.090          | 1.125          | 1.130          | 1.117                  |       |                         |            |
| 1:04                           | 3620 / 3600                | 208.8          | 1564 / 1790                  | 232.8               | 1.109          | 1.095          | 1.129          | 1.137          | 1.123                  |       |                         | 2.25       |
| 1:05                           | 3790 / 3850                | 223.5          | 1663 / 1922                  | 246.2               | 1.170          | 1.163          | 1.198          | 1.200          | 1.185                  |       |                         |            |
| 1:09                           | 3790 / 3750                | 217.6          | 1663 / 1871                  | 241.0               | 1.176          | 1.163          | 1.199          | 1.204          | 1.190                  |       |                         |            |
| 1:10                           | 3960 / 4150                | 241.2          | 1762 / 2114                  | 265.6               | 1.304          | 1.293          | 1.325          | 1.335          | 1.320                  |       |                         |            |
| 1:14                           | 3960 / 4000                | 232.4          | 1762 / 2051                  | 259.2               | 1.318          | 1.304          | 1.334          | 1.341          | 1.330                  |       |                         |            |
| 1:15                           | 4130 / 4250                | 247.1          | 1861 / 2191                  | 273.4               | 1.392          | 1.375          | 1.405          | 1.417          | 1.405                  |       |                         |            |
| 1:19                           | 4130 / 4150                | 241.2          | 1861 / 2132                  | 267.4               | 1.400          | 1.382          | 1.412          | 1.420          | 1.410                  | 0.073 | 0.020                   |            |
| 1:20                           | 4300 / 4425                | 257.6          | 1960 / 2305                  | 285.0               | 1.490          | 1.470          | 1.500          | 1.515          | 1.503                  | 0.073 | 0.039                   |            |
| 1:24                           | 4300 / 4300<br>4463 / 4550 | 265.3          | 2058 / 2394                  | 278.7               | 1.500          | 1.478          | 1.510          | 1.520          | 1.510                  |       |                         |            |
| 1:29                           | 4463 / 4450                | 259.2          | 2058 / 2330                  | 287.5               | 1.582          | 1.565          | 1.599          | 1.610          | 1.594                  |       |                         | 2.88       |
| 1:30                           | 4626 / 4775                | 279.1          | 2157 / 2535                  | 308.3               | 1.715          | 1.694          | 1.726          | 1.740          | 1.728                  |       |                         | 2.00       |
| 1:34                           | 4626 / 4650                | 271.4          | 2157 / 2461                  | 300.8               | 1.726          | 1.708          | 1.735          | 1.750          | 1.738                  |       |                         |            |
| 1:35                           | 4790 / 4925                | 288.2          | 2255 / 2627                  | 317.6               | 1.830          | 1.800          | 1.838          | 1.850          | 1.840                  |       |                         |            |
| 1:39                           | 4790 / 4750                | 277.5          | 2255 / 2543                  | 309.1               | 1.838          | 1.813          | 1.843          | 1.858          | 1.848                  |       |                         |            |
| 1:40                           | 4953 / 5100                | 299.0          | 2354 / 2760                  | 331.0               | 1.975          | 1.949          | 1.983          | 2.000          | 1.988                  | Rese  | t Gages                 | 2.94       |
| 1:44                           | 4953 / 4925                | 288.2          | 2354 / 2637                  | 318.6               | 1.983          | 1.956          | 1.990          | 2.005          | 1.994                  |       |                         |            |
| 1:45                           | 5117 / 5250                | 308.0          | 2453 / 2840                  | 339.1               | 2.116          | 2.085          | 2.123          | 2.145          | 2.131                  | 0.77  |                         |            |
| 1:49                           | 5117 / 5050                | 295.9          | 2453 / 2744                  | 329.4               | 2.128          | 2.099          | 2.136          | 2.155          | 2.142                  | 0.088 | 0.039                   | 2.00       |
| 1:50                           | 5283 / 5400<br>5283 / 5175 | 317.0          | 2552 / 2929                  | 348.1               | 2.305          | 2.274          | 2.315          | 2.338          | 2.322                  |       |                         | 3.25       |
| 1:54                           | 5283 / 5175<br>5450 / 5600 | 303.5<br>329.0 | 2552 / 2812<br>2651 / 3041   | 336.3<br>359.4      | 2.323<br>2.585 | 2.291<br>2.544 | 2.323<br>2.591 | 2.345<br>2.618 | 2.334<br>2.602         |       |                         |            |
| 1:59                           | 5450 / 5300                | 311.0          | 2651 / 3041                  | 345.5               | 2.585          | 2.564          | 2.608          | 2.630          | 2.615                  |       |                         |            |
| 2:00                           | 5616 / 5800                | 341.0          | 2750 / 3159                  | 371.3               | 3.073          | 3.149          | 3.081          | 3.110          | 3.092                  |       |                         |            |
| 2:04                           | 5616 / 5400                | 317.0          | 2750 / 2976                  | 352.8               | 3.115          | 3.079          | 3.121          | 3.142          | 3.129                  | 0.098 | 0.039                   | 4.00       |
| 2:05                           | 4528 / 4525                | 263.8          | 2098 / 2468                  | 301.5               | 3.091          | 3.051          | 3.099          | 3.118          | 3.105                  | 2.370 |                         | 1.50       |
| 2:09                           | 4528 / 4550                | 265.3          | 2098 / 2474                  | 302.1               | 3.089          | 3.044          | 3.093          | 3.110          | 3.100                  |       |                         |            |
| 2:10                           | 3416 / 3400                | 197.1          | 1444 / 1730                  | 226.8               | 2.927          | 2.877          | 2.931          | 2.950          | 2.939                  |       |                         |            |
| 2:14                           | 3416 / 3450                | 200.0          | 1444 / 1738                  | 227.6               | 2.933          | 2.887          | 2.931          | 2.955          | 2.944                  |       |                         |            |
| 2:15                           | 2300 / 2300                | 132.0          | 784 / 964                    | 150.2               | 2.583          | 2.534          | 2.568          | 2.600          | 2.592                  |       |                         |            |
| 2:19                           | 2300 / 2300                | 132.0          | 784 / 984                    | 152.2               | 2.584          | 2.534          | 2.569          | 2.600          | 2.592                  |       |                         |            |
| 2:20                           | 1200 / 1200                | 66.0           | 127 / 207                    | 73.9                | 2.403          | 2.361          | 2.388          | 2.415          | 2.409                  |       |                         |            |
| 2:24                           | 1200 / 1250                | 69.0           | 127 / 230                    | 76.1                | 2.403          | 2.361          | 2.388          | 2.415          | 2.409                  |       |                         |            |
| 2:25                           | 0/0                        | 0.0            | -538 / -539                  | 0.0                 | 2.083          | 2.043          | 2.057          | 2.085          | 2.084                  | 0.030 | 0.039                   | 2.78       |
| 2:29                           | 0 / 0                      | 0.0            | -538 / -542<br>Target/Actual | 0.0                 | 2.057          | 2.011          | 2.028          | 2.065          | 2.061<br>wn are calcul |       |                         |            |

**Table J-2.** Load – displacement measurements during axial tension loading test of pile T-2

| PILE DIAMETER:  | 24                         |                  | CONTRACTOR:                | BERKEL              |                |                |                |                | PILE ID:                   | T-2            |
|-----------------|----------------------------|------------------|----------------------------|---------------------|----------------|----------------|----------------|----------------|----------------------------|----------------|
| PILE LENGTH:    |                            |                  | PILE TYPE :                | ACIP                | THE & COA      | Q.             |                |                | JACK S/N:                  |                |
| LOAD TEST TYPE: | Tension                    |                  | WEATHER:                   | WINDY/SUNNY         | 19 (11)        | 59             |                |                | GAUGE S/N:                 | 1101UXL2       |
| BERKEL REP:     | Tanner Swafford            |                  |                            |                     | CQ.            | Ü.             |                |                | LOAD CELL S/N:             |                |
|                 |                            |                  |                            |                     | RACTOR         |                |                |                | BEGIN DATE:                |                |
|                 |                            |                  |                            |                     |                |                |                |                | END DATE:                  | 12/2/2016      |
| TIME            | JACE                       |                  |                            | O CELL              |                | LE HEAD N      |                |                | D: 14 (1)                  |                |
| 12:15           | PRESSURE (psi)             | 0.00             | (dgs)<br>-538 / -540       | Load (tons)<br>0.00 | 0.000          | 0.000          | 0.000          | 0.000          | Dial Average (in)<br>0.000 |                |
| 12:15           | 280 / 300                  | 16.07            | -386 / -420                | 11.68               | 0.000          | 0.000          | 0.000          | 0.000          | 0.000                      |                |
| 12:19           | 280 / 300                  | 16.07            | -386 / -420                | 11.68               | 0.001          | 0.001          | 0.003          | 0.003          | 0.002                      |                |
| 12:20           | 560 / 600                  | 32.22            | -235 / -224                | 31.09               | 0.001          | 0.002          | 0.007          | 0.006          | 0.004                      |                |
| 12:24           | 560 / 600                  | 32.22            | -235 / -232                | 30.30               | 0.001          | 0.002          | 0.007          | 0.006          | 0.004                      |                |
| 12:25           | 840 / 850                  | 46.11            | -83 / -80                  | 45.40               | 0.005          | 0.005          | 0.012          | 0.011          | 0.008                      |                |
| 12:29           | 840 / 850                  | 46.11            | -83 / -80                  | 45.40               | 0.006          | 0.005          | 0.012          | 0.011          | 0.009                      |                |
| 12:30           | 1100 / 1100                | 60.00            | 67 / 64                    | 59.70               | 0.013          | 0.014          | 0.019          | 0.018          | 0.016                      |                |
| 12:34           | 1100 / 1050                | 57.22            | 67 / 62                    | 59.50               | 0.016          | 0.017          | 0.017          | 0.017          | 0.017                      |                |
| 12:35           | 1350 / 1300                | 72.00            | 218 / 219                  | 75.05<br>71.29      | 0.094          | 0.074          | 0.055          | 0.075          | 0.075                      | **popping      |
| 12:39<br>12:40  | 1350 / 1250<br>1600 / 1600 | 69.00<br>90.00   | 218 / 181<br>370 / 400     | 93.03               | 0.100<br>0.176 | 0.075<br>0.150 | 0.061          | 0.080<br>0.152 | 0.079                      |                |
| 12:40           | 1600 / 1500                | 84.00            | 370 / 400                  | 87.33               | 0.176          | 0.156          | 0.130          | 0.152          | 0.152                      |                |
| 12:45           | 1850 / 1950                | 111.00           | 519 / 639                  | 117.17              | 0.328          | 0.130          | 0.133          | 0.301          | 0.137                      | **popping      |
| 12:49           | 1850 / 1800                | 102.00           | 519 / 550                  | 108.18              | 0.330          | 0.290          | 0.268          | 0.303          | 0.298                      | Popping        |
| 12:50           | 2100 / 2200                | 126.00           | 667 / 806                  | 134.14              | 0.525          | 0.477          | 0.452          | 0.488          | 0.486                      |                |
| 12:54           | 2100 / 2200                | 126.00           | 667 / 759                  | 129.36              | 0.525          | 0.477          | 0.452          | 0.488          | 0.486                      |                |
| 12:55           | 2350 / 2350                | 135.00           | 814 / 908                  | 144.51              | 0.605          | 0.558          | 0.532          | 0.571          | 0.567                      |                |
| 12:59           | 2350 / 2300                | 132.00           | 814 / 888                  | 142.47              | 0.610          | 0.559          | 0.534          | 0.572          | 0.569                      |                |
| 1:00            | 2600 / 2600                | 150.00           | 962 / 1086                 | 162.36              | 0.704          | 0.650          | 0.627          | 0.670          | 0.663                      |                |
| 1:04            | 2600 / 2500                | 144.00           | 962 / 1053                 | 159.07              | 0.711          | 0.657          | 0.629          | 0.672          | 0.667                      |                |
| 1:05            | 2855 / 3000                | 173.53           | 1113 / 1341                | 187.77              | 0.865          | 0.810          | 0.786          | 0.834          | 0.824                      |                |
| 1:09<br>1:10    | 2855 / 2900<br>3110 / 3250 | 167.65<br>188.24 | 1113 / 1300<br>1263 / 1514 | 183.69<br>205.02    | 0.872<br>0.971 | 0.813<br>0.914 | 0.790<br>0.901 | 0.837<br>0.948 | 0.828                      |                |
| 1:14            | 3110 / 3230                | 179.41           | 1263 / 1314                | 200.63              | 0.971          | 0.914          | 0.901          | 0.948          | 0.934                      |                |
| 1:15            | 3365 / 3500                | 202.94           | 1414 / 1677                | 221.41              | 0.993          | 0.938          | 1.020          | 1.066          | 1.004                      |                |
| 1:19            | 3365 / 3300                | 191.18           | 1414 / 1631                | 216.77              | 0.993          | 0.940          | 1.021          | 1.068          | 1.006                      |                |
| 1:20            | 3620 / 3700                | 214.71           | 1564 / 1837                | 237.58              | 1.010          | 0.958          | 1.137          | 1.184          | 1.072                      |                |
| 1:24            | 3620 / 3600                | 208.82           | 1564 / 1783                | 232.12              | 1.024          | 0.971          | 1.141          | 1.186          | 1.081                      |                |
| 1:25            | 3875 / 4000                | 232.35           | 1712 / 2024                | 256.52              | 1.041          | 0.996          | 1.272          | 1.320          | 1.157                      |                |
| 1:29            | 3875 / 3900                | 226.47           | 1712 / 1973                | 251.35              | 1.043          | 0.998          | 1.276          | 1.324          | 1.160                      |                |
| 1:30            | 4130 / 4250                | 247.26           | 1861 / 2181                | 272.43              | 1.060          | 1.020          | 1.390          | 1.438          | 1.227                      |                |
| 1:34<br>1:35    | 4130 / 4100<br>4381 / 4500 | 238.24<br>262.38 | 1861 / 2109<br>2009 / 2353 | 265.14<br>289.86    | 1.064<br>1.090 | 1.023          | 1.397<br>1.526 | 1.445<br>1.570 | 1.232<br>1.310             |                |
| 1:44            | 4381 / 4300                | 250.28           | 2009 / 2333                | 278.61              | 1.095          | 1.056          | 1.538          | 1.583          | 1.318                      |                |
| 1:45            | 4626 / 4800                | 280.63           | 2157 / 2540                | 308.79              | 1.134          | 1.103          | 1.700          | 1.748          | 1.421                      |                |
| 1:49            | 4626 / 4600                | 268.43           | 2157 / 2461                | 300.81              | 1.143          | 1.109          | 1.705          | 1.752          | 1.427                      |                |
| 1:50            | 4871 / 5000                | 292.85           | 2305 / 2683                | 323.23              | 1.190          | 1.152          | 1.827          | 1.879          | 1.512                      |                |
| 1:54            | 4871 / 4850                | 283.69           | 2305 / 2603                | 315.15              | 1.196          | 1.157          | 1.883          | 1.940          | 1.544                      | **Reset gages  |
| 2:00            | 5117 / 5300                | 310.99           | 2453 / 2866                | 341.72              | 1.265          | 1.232          | 2.061          | 2.121          | 1.670                      |                |
| 2:04            | 5117 / 5150                | 301.98           | 2453 / 2773                | 332.32              | 1.283          | 1.245          | 2.066          | 2.126          | 1.680                      |                |
| 2:05            | 5366 / 5500                | 323.01           | 2601 / 3010                | 356.26              | 1.355          | 1.320          | 2.166          | 2.227          | 1.767                      |                |
| 2:09<br>2:10    | 5366 / 5350<br>5616 / 5800 | 314.00<br>341.03 | 2601 / 2893<br>2750 / 3135 | 344.44<br>368.92    | 1.367<br>1.475 | 1.329<br>1.440 | 2.186<br>2.433 | 2.249<br>2.496 | 1.783<br>1.961             |                |
| 2:10            | 5616 / 5575                | 327.52           | 2750 / 3021                | 357.37              | 1.473          | 1.440          | 2.463          | 2.496          | 1.980                      |                |
| 2:15            | 5866 / 6000                | 352.89           | 2900 / 3357                | 391.42              | 1.995          | 1.970          | 2.991          | 3.042          | 2.500                      |                |
| 2:19            | 5866 / 5850                | 344.04           | 2900 / 3219                | 377.43              | 2.087          | 2.057          | 3.121          | 3.178          | 2.611                      |                |
| 2:33            | 4722 / 4700                | 274.52           | 2216 / 2472                | 301.92              | 2.076          | 2.062          | 3.131          | 3.182          | 2.613                      |                |
| 2:37            | 4722 / 4750                | 277.58           | 2216 / 2499                | 304.65              | 2.076          | 2.062          | 3.131          | 3.182          | 2.613                      |                |
| 2:38            | 3569 / 3550                | 205.88           | 1532 / 1801                | 233.94              | 2.020          | 1.994          | 3.047          | 3.104          | 2.541                      |                |
| 2:42            | 3569 / 3550                | 205.88           | 1532 / 1812                | 235.05              | 2.020          | 1.994          | 3.047          | 3.104          | 2.541                      |                |
| 2:43            | 2403 / 2400                | 138.00           | 845 / 987                  | 152.49              | 1.903          | 1.870          | 2.898          | 2.966          | 2.409                      |                |
| 2:47            | 2403 / 2400                | 138.00           | 845 / 989                  | 152.69              | 1.903          | 1.870          | 2.898          | 2.966          | 2.409                      |                |
| 2:48            | 1250 / 1250                | 69.00            | 157 / 167                  | 69.90               | 1.742          | 1.710          | 2.615          | 2.685          | 2.188                      |                |
| 2:52<br>2:53    | 1250 / 1250<br>0 / 0       | 69.00<br>0.00    | 157 / 164<br>-538 / -541   | 69.60<br>0.00       | 1.742<br>1.592 | 1.710<br>1.582 | 2.615<br>2.347 | 2.684<br>2.391 | 2.188<br>1.978             |                |
| 2:53            | 0 / 0                      | 0.00             | -538 / -541<br>-538 / -541 | 0.00                | 1.592          | 1.582          | 2.347          | 2.391          | 1.978                      |                |
| 2.31            | Target/Actual              |                  | Target/Actual              | 0.00                |                |                |                |                | e calculated displace      | ments corrects |
|                 | - an Bear I terrain        |                  | Dec / Jectual              |                     |                | -u5es 1(esc    | 200 10115      | . ono will all | - Jureanawa dispiace       |                |

## **APPENDIX K**

## LATERAL LOAD TEST SETUP AND TEST RESULTS

**Table K-1.** Load – displacement measurements during lateral loading test of pile L-1

| PILE DIAMETER:  | <u>18 IN</u>    |             | CONTRACTOR: | BERKEL      | GCO                |                      | PILE ID:       | <u>L-1</u> |
|-----------------|-----------------|-------------|-------------|-------------|--------------------|----------------------|----------------|------------|
| PILE LENGTH:    | 40 FT           |             | PILE TYPE:  | <u>ACIP</u> | Street 1 100 27    |                      | JACK S/N:      | 61129      |
| LOAD TEST TYPE: | <u>Lateral</u>  |             | WEATHER:    | WINDY/SUNNY | 19 ((1)) 59        |                      | GAUGE S/N:     | 1102QF1    |
| BERKEL REP:     | Tanner Swafford |             |             |             | 3                  |                      | LOAD CELL S/N: | n/a        |
|                 |                 |             |             |             | ATRACTORS.         |                      | BEGIN DATE:    | 12/6/2016  |
|                 |                 |             |             |             |                    |                      | END DATE:      | 12/6/2016  |
| HOLD TIME/TIME  | JACK            |             | LOAD CELL   |             | PILE HEAD MOVEMENT |                      | T              | Secondary  |
| HOLD THAL THAL  | PRESSURE (psi)  | LOAD (tons) | (dgs)       | Load (tons) | Top - DIAL 1 (in)  | Bottom - DIAL 2 (in) | Average (in)   | (in)       |
| 2:58            | 0 / 0           | 0.0         | X           | 0.0         | 0.000              | 0.000                | 0.000          | 2.00       |
| 2:59            | 197 / 225       | 2.3         | X           | 2.0         | 0.024              | 0.019                | 0.022          | 2.03       |
| 3:08            | 197 / 200       | 2.0         | X           | 2.0         | 0.025              | 0.019                | 0.022          | 2.03       |
| 3:09            | 393 / 450       | 4.6         | X           | 4.0         | 0.056              | 0.049                | 0.053          | 2.06       |
| 3:18            | 393 / 375       | 3.8         | X           | 4.0         | 0.053              | 0.044                | 0.049          | 2.06       |
| 3:19            | 590 / 650       | 6.6         | X           | 6.0         | 0.094              | 0.081                | 0.088          | 2.13       |
| 3:33            | 590 / 600       | 6.1         | X           | 6.0         | 0.099              | 0.085                | 0.092          | 2.13       |
| 3:34            | 786 / 850       | 8.6         | X           | 8.0         | 0.166              | 0.145                | 0.156          | 2.19       |
| 3:53            | 786 / 725       | 7.4         | X           | 8.0         | 0.162              | 0.141                | 0.152          | 2.19       |
| 3:54            | 983 / 1050      | 10.6        | X           | 10.0        | 0.284              | 0.247                | 0.266          | 2.34       |
| 4:13            | 983 / 950       | 9.7         | X           | 10.0        | 0.282              | 0.246                | 0.264          | 2.34       |
| 4:14            | 1196 / 1275     | 12.7        | X           | 12.0        | 0.454              | 0.397                | 0.426          | 2.53       |
| 4:33            | 1196 / 1150     | 11.6        | X           | 12.0        | 0.455              | 0.398                | 0.427          | 2.53       |
| 4:34            | 1410 / 1500     | 14.8        | X           | 14.0        | 0.668              | 0.583                | 0.626          | 2.78       |
| 4:53            | 1410 / 1300     | 13.0        | X           | 14.0        | 0.668              | 0.585                | 0.627          | 2.78       |
| 4:54            | 1517 / 1650     | 16.3        | X           | 15.0        | 0.798              | 0.699                | 0.749          | 2.94       |
| 5:13            | 1517 / 1450     | 14.4        | X           | 15.0        | 0.795              | 0.698                | 0.747          | 2.94       |
| 5:14            | 1623 / 1750     | 17.2        | X           | 16.0        | 0.918              | 0.805                | 0.862          | 3.06       |
| 5:33            | 1623 / 1625     | 16.0        | X           | 16.0        | 0.918              | 0.808                | 0.863          | 3.06       |
| 5:34            | 1730 / 1850     | 18.1        | X           | 17.0        | 1.041              | 0.912                | 0.977          | 3.22       |
| 5:53            | 1730 / 1725     | 17.0        | X           | 17.0        | 1.041              | 0.914                | 0.978          | 3.19       |
| 5:54            | 1837 / 1950     | 19.1        | X           | 18.0        | 1.130              | 0.995                | 1.063          | 3.31       |
| 6:13            | 1837 / 1800     | 17.7        | X           | 18.0        | 1.130              | 0.996                | 1.063          | 3.31       |
| 6:14            | 1943 / 2050     | 20.0        | X           | 19.0        | 1.308              | 1.155                | 1.232          | 3.50       |
| 6:33            | 1943 / 1900     | 18.6        | X           | 19.0        | 1.308              | 1.156                | 1.232          | 3.50       |
| 6:34            | 1436 / 1425     | 14.1        | X           | 14.25       | 1.297              | 1.148                | 1.223          | 3.50       |
| 6:38            | 1436 / 1425     | 14.1        | X           | 14.25       | 1.297              | 1.148                | 1.223          | 3.50       |
| 6:39            | 933 / 900       | 9.2         | X           | 9.5         | 1.278              | 1.047                | 1.163          | 3.34       |
| 6:43            | 933 / 900       | 9.2         | X           | 9.5         | 1.277              | 1.047                | 1.162          | 3.34       |
| 6:44            | 466 / 450       | 4.6         | X           | 4.75        | 0.940              | 0.841                | 0.891          | 3.06       |
| 6:48            | 466 / 500       | 5.1         | X           | 4.75        | 0.940              | 0.841                | 0.891          | 3.06       |
| 6:49            | 0 / 0           | 0.0         | X           | 0.0         | 0.286              | 0.257                | 0.272          | 2.31       |
| 6:53            | 0 / 0           | 0.0         | X           | 0.0         | 0.286              | 0.257                | 0.272          | 2.31       |
|                 | Target/Actual   |             |             |             |                    |                      |                |            |

**Table K-2.** Load – displacement measurements during lateral loading test of pile L-2

| PILE DIAMETER:          | 24 IN           |             | CONTRACTOR: | BERKEL      |                   |                      | PILE ID:       | L-2       |
|-------------------------|-----------------|-------------|-------------|-------------|-------------------|----------------------|----------------|-----------|
| PILE LENGTH:            | 40 FT           |             | PILE TYPE : | ACIP        | ELE TOTO          |                      | JACK S/N:      | 61129     |
| LOAD TEST TYPE: Lateral |                 |             | WEATHER:    | WINDY/SUNNY | 10 (1914) 50      |                      | GAUGE S/N:     | 1102QF1   |
| BERKEL REP:             | Tanner Swafford |             |             |             |                   |                      | LOAD CELL S/N: | n/a       |
|                         |                 |             |             |             | ATRACTORS.        |                      | BEGIN DATE:    | 12/6/2016 |
|                         |                 |             |             |             |                   |                      | END DATE:      | 12/6/2016 |
| TIME                    | JACK            |             | LOAD CELL   |             | P                 | PILE HEAD MOVEMENT   |                |           |
| THVIE                   | PRESSURE (psi)  | LOAD (tons) | (dgs)       | Load (tons) | Top - DIAL 1 (in) | Bottom - DIAL 2 (in) | Average (in)   | (in)      |
| 9:08                    | 0 / 0           | 0.00        | X           | 0           | 0.000             | 0.000                | 0.000          | 3.00      |
| 9:08                    | 393 / 425       | 4.33        | X           | 4           | 0.030             | 0.025                | 0.028          | 3.03      |
| 9:17                    | 393 / 400       | 4.07        | X           | 4           | 0.032             | 0.026                | 0.029          | 3.03      |
| 9:18                    | 786 / 850       | 8.62        | X           | 8           | 0.091             | 0.078                | 0.085          | 3.09      |
| 9:27                    | 786 / 800       | 8.14        | X           | 8           | 0.091             | 0.080                | 0.086          | 3.09      |
| 9:28                    | 1196 / 1200     | 12.04       | X           | 12          | 0.298             | 0.271                | 0.285          | 3.31      |
| 9:41                    | 1196 / 1175     | 11.80       | X           | 12          | 0.303             | 0.278                | 0.291          | 3.34      |
| 9:42                    | 1623 / 1650     | 16.25       | X           | 16          | 0.491             | 0.444                | 0.468          | 3.47      |
| 10:01                   | 1623 / 1600     | 15.78       | X           | 16          | 0.494             | 0.448                | 0.471          | 3.50      |
| 10:02                   | 2050 / 2000     | 19.53       | X           | 20          | 0.712             | 0.646                | 0.679          | 3.59      |
| 10:21                   | 2050 / 1925     | 18.83       | X           | 20          | 0.720             | 0.652                | 0.686          | 3.59      |
| 10:22                   | 2423 / 2400     | 23.75       | X           | 24          | 1.020             | 0.924                | 0.972          | 4.03      |
| 10:41                   | 2423 / 2350     | 23.22       | X           | 24          | 1.022             | 0.928                | 0.975          | 4.03      |
| 10:42                   | 2610 / 2600     | 25.89       | X           | 26          | 1.255             | 1.136                | 1.196          | 4.59      |
| 11:01                   | 2610 / 2500     | 24.82       | X           | 26          | 1.258             | 1.145                | 1.202          | 4.59      |
| 11:02                   | 1996 / 2000     | 19.53       | X           | 19.5        | 1.258             | 1.144                | 1.201          | 4.59      |
| 11:06                   | 1996 / 2025     | 19.77       | X           | 19.5        | 1.243             | 1.128                | 1.186          | 4.59      |
| 11:07                   | 1302 / 1300     | 12.97       | X           | 13          | 1.163             | 1.062                | 1.113          | 4.38      |
| 11:11                   | 1302 / 1300     | 12.97       | X           | 13          | 1.169             | 1.064                | 1.117          | 4.38      |
| 11:12                   | 638 / 650       | 6.62        | X           | 6.5         | 0.993             | 0.817                | 0.905          | 3.91      |
| 11:16                   | 638 / 650       | 6.62        | X           | 6.5         | 0.996             | 0.820                | 0.908          | 3.88      |
| 11:17                   | 0 / 0           | 0.00        | X           | 0           | 0.412             | 0.385                | 0.399          | 3.38      |
| 11:21                   | 0 / 0           | 0.00        | X           | 0           | 0.411             | 0.385                | 0.398          | 3.38      |
|                         | Target/Actual   |             |             |             |                   |                      |                |           |

## **APPENDIX L**

# AS-BUILT MEASUREMENTS OF EXTRACTED PILE (E-1)

**Table L-1.** Measurements of circumference of the extracted pile E-1

|           | Distance |        | Measured      |      | Calculated |      | Difference from  |      |         |
|-----------|----------|--------|---------------|------|------------|------|------------------|------|---------|
| Increment |          | g Pile | Circumference |      | Diameter   |      | Theoretical Diam |      | iameter |
|           | (ft)     | (m)    | (in)          | (mm) | (in)       | (mm) | (in)             | (mm) | (%)     |
| 1         | 1        | 0.3    | 57            | 1448 | 18.1       | 461  | 0.1              | 4    | 0.8%    |
| 2         | 2        | 0.6    | 57            | 1448 | 18.1       | 461  | 0.1              | 4    | 0.8%    |
| 3         | 3        | 0.9    | 62            | 1575 | 19.7       | 501  | 1.7              | 44   | 9.6%    |
| 4         | 4        | 1.2    | 62            | 1575 | 19.7       | 501  | 1.7              | 44   | 9.6%    |
| 5         | 5        | 1.5    | 61            | 1549 | 19.4       | 493  | 1.4              | 36   | 7.9%    |
| 6         | 6        | 1.8    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 7         | 7        | 2.1    | 59            | 1499 | 18.8       | 477  | 0.8              | 20   | 4.3%    |
| 8         | 8        | 2.4    | 59            | 1499 | 18.8       | 477  | 0.8              | 20   | 4.3%    |
| 9         | 9        | 2.7    | 61            | 1549 | 19.4       | 493  | 1.4              | 36   | 7.9%    |
| 10        | 10       | 3.0    | 61            | 1549 | 19.4       | 493  | 1.4              | 36   | 7.9%    |
| 11        | 11       | 3.4    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 12        | 12       | 3.7    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 13        | 13       | 4.0    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 14        | 14       | 4.3    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 15        | 15       | 4.6    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 16        | 16       | 4.9    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 17        | 17       | 5.2    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 18        | 18       | 5.5    | 61            | 1549 | 19.4       | 493  | 1.4              | 36   | 7.9%    |
| 19        | 19       | 5.8    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 20        | 20       | 6.1    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 21        | 21       | 6.4    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 22        | 22       | 6.7    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 23        | 23       | 7.0    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 24        | 24       | 7.3    | 60            | 1524 | 19.1       | 485  | 1.1              | 28   | 6.1%    |
| 25        | 25       | 7.6    | 62            | 1575 | 19.7       | 501  | 1.7              | 44   | 9.6%    |
| 26        | 26       | 7.9    | 62            | 1575 | 19.7       | 501  | 1.7              | 44   | 9.6%    |
| 27        | 27       | 8.2    | 63            | 1600 | 20.1       | 509  | 2.1              | 52   | 11.4%   |
| 28        | 28       | 8.5    | 65            | 1651 | 20.7       | 526  | 2.7              | 69   | 15.0%   |
| 29        | 29       | 8.8    | 65            | 1651 | 20.7       | 526  | 2.7              | 69   | 15.0%   |
| 30        | 30       | 9.1    | 65            | 1651 | 20.7       | 526  | 2.7              | 69   | 15.0%   |
| 31        | 31       | 9.5    | 65            | 1651 | 20.7       | 526  | 2.7              | 69   | 15.0%   |
| 32        | 32       | 9.7    | 63            | 1600 | 20.1       | 509  | 2.1              | 52   | 11.4%   |
| 33        | 33       | 10.1   | 64            | 1626 | 20.4       | 517  | 2.4              | 60   | 13.2%   |
| 34        | 34       | 10.4   | 63            | 1600 | 20.1       | 509  | 2.1              | 52   | 11.4%   |
| 35        | 35       | 10.7   | 63            | 1600 | 20.1       | 509  | 2.1              | 52   | 11.4%   |
| 36        | 36       | 11.0   | 64            | 1626 | 20.4       | 517  | 2.4              | 60   | 13.2%   |
| 37        | 37       | 11.3   | 61            | 1549 | 19.4       | 493  | 1.4              | 36   | 7.9%    |
| 38        | 38       | 11.6   | 59            | 1499 | 18.8       | 477  | 0.8              | 20   | 4.3%    |
| 39        | 39       | 11.9   | 59            | 1499 | 18.8       | 477  | 0.8              | 20   | 4.3%    |
| 40        | 40       | 12.2   | 59            | 1499 | 18.8       | 477  | 0.8              | 20   | 4.3%    |